首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钠离子电池具有与锂离子电池相似工作机理,因其原料资源丰富,是一种极具应用前景的新一代储能设备.然而,钠离子电池面临着电极材料体积膨胀过大、钠离子传输动力学较慢和能量密度偏低等问题,阻碍了其实用化.静电纺丝技术合成的一维钠离子电池电极材料,可通过形貌调控或碳复合方式有效缓冲储钠过程中电极的体积膨胀,而且具有连续的电子传递和较短的离子传输路径,从而改善钠离子传输动力学,以提高电池倍率性能.通过电纺还可简便地制备直接用于钠离子电池的柔性纤维膜来提高电池的能量密度.综述了静电纺丝技术制备钠离子电池材料的研究进展,主要包括正极和负极材料,对今后静电纺丝在钠离子电池中的发展进行了展望.  相似文献   

2.
钱江锋  高学平  杨汉西 《电化学》2013,19(6):523-529
大规模储能的二次电池不仅需要具有适宜的电化学性能,更需考虑资源、成本和环境效益等应用要求. 锂离子电池储能的大规模应用也将受到制约. 从资源与环境方面考虑,钠离子电池作为储能电池更具应用优势. 然而,从目前的技术现状来看,几类不同的嵌钠正极材料虽显现出可观的嵌钠容量与较好的循环性,但能量密度与功率密度尚待提高. 硬碳材料和合金负极最有希望用于钠离子电池,这类材料的初始充放电效率和循环稳定性仍有待改善. 本文简要分析了锂离子电池与钠离子电池在材料要求方面的差异,回顾了近年来钠离子电池材料探索中的突破性进展,并主要结合本课题组的研究工作讨论了钠离子电池及其关键材料的发展方向.  相似文献   

3.
钠离子电池有望取代锂离子电池实现大规模储能应用。然而,储钠负极材料具有较低的初始库伦效率,制约了高比能钠离子电池的开发。预钠化技术被认为是补偿负极活性钠损失、提升电池能量密度的最直接有效的方法,对于钠离子电池的商业化应用具有重要意义。本文全面总结近年来预钠化技术的最新研究进展,包括短接法预钠化、电化学预钠化、钠金属物理预钠化、化学预钠化和正极补钠添加剂等,并从反应原理、安全性、可操作性、处理效率和可放大性等角度分析讨论现有各技术方案的优势及面临的挑战;着重介绍化学预钠化和正极补钠添加剂,这两类最具应用前景的预钠化技术的最新成果,进而从实用化角度深入探讨仍待解决的科学问题和技术难点。本文可为预钠化技术的进一步优化和高比能钠离子电池的开发提供思路。  相似文献   

4.
钠离子电池凭借钠资源丰富、价格低廉在大规模储能领域有着重要应用前景. 然而,钠离子相对锂离子较大的半径和质量限制了它在电极材料中的可逆脱嵌,导致其电化学性能不佳. 因此研发稳定、高效储钠的高比能电极材料是钠离子电池实用化的关键. 另外,进一步优化与电极材料相匹配的电解质来实现高安全、长寿命钠离子电池的构建,推动其商业化进程,也是迫切需要解决的问题. 本文主要对室温钠离子电池关键材料(包括正极、负极和电解质材料)的研究进展进行简要综述,并探讨了其面临的困难及可行的解决方案,为钠离子电池的发展提供一定参考依据.  相似文献   

5.
钠离子资源丰富,分布广泛,价格低廉,因而钠离子电池被认为是下一代大规模储能技术的理想选择之一. 然而,钠离子较大的半径和质量不利于它与电极材料的可逆反应. 开发能够快速、稳定储钠的基质材料是提升钠离子电池性能的关键之一. 此外,如何合理地优化电解质,匹配正负极材料,以实现高性能、高安全、低成本钠离子全电池的构建,切实将其推向市场,也是亟待解决的问题. 本文综述了国内外钠离子电池关键材料(包括正极材料、负极材料和电解质)的研究进展,介绍了一些具有代表性的钠离子全电池实例. 对钠离子电池的基础研究和实际应用具有一定参考价值和借鉴意义.  相似文献   

6.
Bin Cao  Xifei Li 《物理化学学报》2020,36(5):1905003-0
钠离子电池是目前新兴的低成本储能技术,因在大规模电化学储能中具有较好的应用前景而受到了国内外学者广泛的关注与研究。作为钠离子电池的关键电极材料之一,非石墨的炭质材料因具有储钠活性高、成本低廉、无毒无害等诸多优点,而被认为是钠离子电池实际应用时负极的最佳选择。本文详细综述了目前钠离子电池炭基负极材料的研究进展,重点介绍了炭质材料的储钠机理与特性,分析了炭材料结构与电化学性能之间的关系,探讨了其存在的问题,为钠离子电池炭基负极材料的发展提供有益的认识。  相似文献   

7.
李佳慧  张晶  芮秉龙  林丽  常立民  聂平 《化学进展》2019,31(9):1283-1292
MXene作为一种新型的二维层状结构材料而备受关注, MXene具有高电子传导率、较大的比面积、较好的机械性能以及独特的层状结构, 已广泛应用于储能、催化、吸附等领域。近年来, MXene及其复合材料应用于二次电池领域引起了人们的广泛关注。氧化物、硫化物等材料具有高容量, 但存在电导率低、反应过程中体积膨胀、循环稳定性差等问题, 构建与MXene的复合材料既能提高容量又可以增强材料的电子导电率, 有效缓解反应过程中体积膨胀, 实现最佳的电化学性能。本文主要对MXene及其复合材料在钠离子电池和钾离子电池中的最新研究进展进行总结, 简要介绍了钠离子电池、钾离子电池和MXene的研究背景, 重点介绍了MXene复合材料在钠离子电池中的应用研究, 主要按照硫化物、氧化物、碳材料进行分类, 对其合成方法与电化学性能进行综述, 同时总结了MXene复合材料在钾离子电池中的研究进展。最后本文对MXene及其复合材料的发展及其应用前景进行了总结与展望。  相似文献   

8.
锑(Sb)具有高的理论比容量、较小的电极极化、合适的Na+脱嵌电位、价格低廉以及环境友好的优势,而成为一种具有较大应用前景的钠离子电池负极材料。但是,Sb基负极材料的一个重要挑战是在循环过程中高比容量伴随着大的体积变化,进而导致活性材料粉化,并从集流体上脱落,这大大限制了其在钠离子电池领域的大规模应用。因此,如何解决Sb基负极材料充放电过程中体积膨胀问题对于高性能的钠离子电池设计是至关重要的。本文详细综述和讨论了Sb基材料的结构-性能关系及其在钠离子电池中的应用,详细介绍了钠离子电池Sb基负极材料在氧化还原反应机理、形貌设计、结构-性能关系等方面的最新研究进展。本综述的主要目的是探讨影响Sb基负极材料性能的决定因素,从而提出有前途的改性策略,以提高其可逆容量和循环稳定性。最后,对Sb基钠离子电池负极材料的未来发展、面临的挑战和前景进行了展望。本文可为Sb负极材料的构建和优化提供具体的观点,阐明了Sb基负极材料未来的发展方向,从而促进钠离子电池的快速发展和实际应用。  相似文献   

9.
钠离子电池凭借钠资源丰富、分布广泛、价格低廉的优势在大规模储能领域具有重要的应用前景,可与锂离子电池形成优势互补.负极材料是电池化学的关键组成,其能量密度、使用寿命等直接影响着电池性能.合金化材料具有理论比容量高、工作电压适宜等优势,被认为是一类有应用潜力的储钠负极.然而,这类材料发生合金化反应时体积膨胀严重,电极材料易粉化脱落,造成电化学稳定性欠佳.目前,主要通过材料微纳结构设计、界面化学调控、碳材料复合、表面包覆、电解液优化等方法来改善其电化学性能.本文综述了合金化负极材料的最新研究进展,探讨了其发展面临的瓶颈以及解决方案,介绍了基于合金化负极的钠离子全电池构筑策略和应用实例,为高性能钠离子电池的发展提供一定参考依据.  相似文献   

10.
全固态钠离子电池具有原料成本低、安全性高以及能量密度高等特点,在移动电源、电动汽车和大规模储能系统领域表现出巨大的应用潜力。然而全固态钠离子电池的发展和规模化应用亟需解决固体电解质室温离子电导率低、界面电荷转移阻抗大、固体电解质与电极界面兼容性和接触差等问题。本文结合近年来全固态钠离子电池相关报道和本课题组研究成果,概述了β-Al2O3型固体电解质、NASICON型固体电解质、硫化物固体电解质、聚合物固体电解质、复合固体电解质的研究进展及发展趋势;综述了全固态钠离子电池界面特性、固体电解质表面修饰、电极/固体电解质界面改性最新研究成果;最后对全固态钠离子电池界面改性策略发展方向进行了展望。本综述有助于加深对全固态钠离子电池界面科学问题的认识,并对固态钠离子电池的发展应用形成理论指导。  相似文献   

11.
董瑞琪  吴锋  白莹  吴川 《化学学报》2021,79(12):1461-1476
钠离子电池因具有成本低、安全性高等优势, 被认为是一种非常适合应用于大规模储能领域的电化学储能技术. 合适的负极材料是促进钠离子电池实现商业化的关键之一. 硬碳材料由于具有丰富的碳源、低成本、无毒环保, 且储钠电位低而被认为是最可能被实用化的钠离子电池负极材料. 然而硬碳负极的实际应用中也面临着首周库伦效率低、长循环稳定性不足以及倍率性能较差等问题, 近年来众多研究者致力于硬碳负极的性能优化研究, 本Review从结构调控、形貌设计、界面构造、电解液优化四方面总结了近年来钠离子电池硬碳负极的性能优化策略研究进展, 分析了每种优化策略的优点和不足, 并进一步讨论了钠离子电池硬碳负极实用化进程中面临的瓶颈问题和挑战.  相似文献   

12.
相较于目前主流的锂离子电池,钠离子电池成本相对较低,因而有望在未来大规模储能系统中获得重要应用,然而其实用化进程仍受制于缺少合适的正负极材料,特别是性能优异且实用化的负极材料.钠离子电池与锂离子电池具有相似的工作原理,但钠离子和锂离子在碳负极材料中的储存行为却有着很大的不同.总体而言,碳材料仍是目前最有望促进钠离子电池实用化的关键负极材料.本文系统总结并分析了目前已有碳材料中钠离子的储存机制,对负极材料的设计思路和研究进展进行了概述,着重阐述了商用化碳分子筛在钠离子电池中的实用化前景.最后,本文对钠离子电池中碳负极材料的未来发展方向进行了展望.  相似文献   

13.
室温钠离子电池由于原料丰富,分布广泛,价格低廉,引起了人们的研究兴趣。然而,由于钠离子相对于锂离子较重且半径较大,这会限制钠离子在电极材料中的可逆脱嵌过程,从而影响电池的电化学性能。因此研发先进的电极材料成为钠离子电池实用化的关键。本文中我们主要介绍了几种典型的钠离子电池电极材料,并对其最新的研究进展进行了简要综述,将为钠离子电池新型电极材料的研究提供基础。  相似文献   

14.
室温钠离子电池由于原料丰富,分布广泛,价格低廉,引起了人们的研究兴趣。然而,由于钠离子相对于锂离子较重且半径较大,这会限制钠离子在电极材料中的可逆脱嵌过程,从而影响电池的电化学性能。因此研发先进的电极材料成为钠离子电池实用化的关键。本文中我们主要介绍了几种典型的钠离子电池电极材料,并对其最新的研究进展进行了简要综述,将为钠离子电池新型电极材料的研究提供基础。  相似文献   

15.
钠离子电池具有资源丰富和成本低等优势,在大规模储能领域受到广泛的关注.开发具有高比容量和长循环稳定性的电极材料是钠离子电池走向应用的关键.碳材料作为钠离子电池的负极材料,具有可调控性高与稳定性好等优势,具有应用潜力.目前,研究较为广泛的碳材料主要包括石墨、无定形碳、杂原子掺杂碳、生物质合成碳,但这些碳负极材料存在着钠-石墨化合物热力学不稳定、较大的体积变化以及初始库伦效率低等问题,制约了钠离子电池的发展与广泛应用.通过对碳材料的结构进行修饰改性及将其与电解液进行匹配,可以有效提升其储钠性能.本文对这几类碳材料的结构特点、电化学性能、储钠机理、面临的问题、改进方法以及商业化前景进行总结,为钠离子电池碳负极材料的发展提供新见解.  相似文献   

16.
由于钠资源价格低廉、分布广泛等优点,钠离子电池及其关键电极材料的研究近年来引起了广泛的关注.然而,与锂相比,钠的离子半径大得多,使其在储钠材料中的迁移速度过慢而严重地限制了钠离子电池倍率性能的提升和储钠容量的表达,而且钠元素具有更高的相对原子质量,也在理论上限制了钠离子电池的能量密度.因此,开发先进的、利于钠离子脱嵌的电极材料是开发高性能钠离子电池的关键.本文在钠离子电池工作原理的基础上,着重介绍了几类典型的关键电极材料,并对它们的研究进展进行了简要综述.  相似文献   

17.
地球上钠资源储量丰富、成本低廉,使得钠电池吸引了越来越多研究者的关注。传统的基于有机溶剂电解液体系的钠电池在安全方面存在不足。固态钠离子电池能够有效解决安全的问题,增加电池的安全性能。固态钠离子电池是一种很有前景的储能方式。钠离子固体电解质主要有Na-β-Al_2O_3、钠超离子导体(NASICON)、硫化物、聚合物以及硼氢化物这几类。无机固体电解质相对于聚合物固体电解质,离子电导率有优势。本文总结了三种常见的无机钠离子固体电解质:Na-β-Al_2O_3、NASICON、硫化物的研究进展,从离子电导率和界面稳定性等方面阐述了近年来的发展。  相似文献   

18.
电池作为电能与化学能的高效转化装置,在能源存储及应用方面具有重要作用。锂/钠离子等二次电池作为绿色高能电池,是便携式电子设备、电动汽车及新能源储能的理想电源。研究新型电极材料是研制新一代高性能电池的基础。磷资源丰富,理论比容量高,可用于电池负极材料。目前对磷材料的认知还存在很多不足,阻碍了磷材料的发展和应用,尤其是在储能方面。本文综述了磷各种同素异形体的性质,介绍了近几年磷作为电极材料在储能领域的研究进展,包括复合材料的制备、材料结构对电化学性能的影响等,重点介绍了载体材料结构对磷电化学性能的调控作用,并展望了储能磷材料的未来发展方向。  相似文献   

19.
有机钠离子电池是一种以有机物作为电极材料的新型二次电池。但有机物作为钠离子电池电极材料仍存在较低的氧化还原电位、高的溶解性和低的导电性等问题。解决这些问题通常采用引入吸电子基团来提高氧化还原电位,形成聚合物来降低溶解性和引入导电基底增加导电性等方法。着重关注羰基化合物作为钠离子电池电极材料,分别介绍羰基化合物/聚合物及其与导电基底形成的复合物和柔性电极在钠离子电池中的应用。  相似文献   

20.
微生物燃料电池电极材料研究进展   总被引:1,自引:0,他引:1  
次素琴  吴娜  温珍海  李景虹 《电化学》2012,18(3):243-251
微生物燃料电池以微生物为催化剂将化学能直接转化成电能,可用于废水处理并产生电能,是一种极具应用前景的生物电化学技术. 本文综述了近年来微生物燃料电池电极材料的制备、功能修饰及表面构建等的研究进展,着重介绍了炭基纳米材料的微结构与成分对微生物燃料电池性能的影响,并分析了微生物燃料电池电极材料现存的主要问题,以期不久的将来微生物燃料电池能付之实用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号