首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以5-氟尿嘧啶(5-FU)为药物模型,以乳酸-磷酸酯共聚物为高分子药物载体,合成了侧链带药的乳酸-磷酸酯共聚物药物。用1HNMR、IR、UV谱对其结构进行了表征。测定高分子药物中5-FU的含量,研究了高分子药物的体外释药性能及共聚物组成对释药性能的影响。  相似文献   

2.
以5-氟尿嘧啶为药物模型,以乳酸-磷酸酯共聚物为高分子药物载体,合成了侧链带药的乳酸-磷酸酯共聚物药物。用^HNMR,IR,UV谱对其结果进行了表征。测定高分子药物中5-FU的含量,研究了高分子药物的体外释药物能及共聚物组成对释药性能的影响。  相似文献   

3.
脂肪族聚碳酸酯共聚物的研究进展   总被引:1,自引:0,他引:1  
脂肪族聚碳酸酯共聚物是一类可完全生物降解的新型材料,自1969年井上祥平等首次通过二氧化碳与环氧化合物反应合成脂肪族聚碳酸酯以来,人们在将二氧化碳固定为全降解聚合物这一研究领域取得了大量研究成果.本文综述了用于二氧化碳和环氧化合物共聚合成脂肪族聚碳酸酯的各类催化剂及反应机理,讨论了脂肪族聚碳酸酯结构/性能关系,并简要介绍了其在不同领域的应用.  相似文献   

4.
脂肪族聚酯-酰胺(polyester-amides)合了聚酯和聚酰胺的优点,如具有优良的物理力学性能和加工性能等等。因此,对脂肪族聚酯-酰胺的研究成为近年来的研究热点。本文从脂肪族聚酯-酰胺的模型化合物(以双酰胺-二醇单体为例)的研究进展入手,分析了模型化合物的结构特点,以及模型化合物与相应聚合物之间的联系,从而为进一步研究聚合物打下一定的基础。本文还综述了脂肪族聚酯-酰胺的分类,各类脂肪族聚酯-酰胺的合成方法,以及脂肪族聚酯一酰胺在可生物降解材料和热塑性弹性体等领域的应用。  相似文献   

5.
<正> 由结晶型芳族聚酯为硬链段,无定型脂肪族聚醚为软链段的聚酯-聚醚多嵌段共聚物,是一类性能优良的热塑弹性体,本文研究链段相容性对这类聚合物组成均一性的影响,因此,合成了一系列不同链段结构的聚酯-聚醚多嵌段共聚物。 如硬链为聚对苯二甲酸乙二醇酯(PET)和丁二醇酯(PBT);软链段有聚乙二醇醚(PET)、聚丁二醇醚(PTMG)、聚二醇醚(PPG)和四氢呋喃同环氧丙烷的共聚醚二醇  相似文献   

6.
脂肪族聚碳酸酯是一类可生物降解、生物相容性的材料,在生物医药方面引起广泛关注。两亲性脂肪族聚碳酸酯聚合物中,聚碳酸酯部分凭借其疏水性能处于胶束内核部位,且该部分通过物理包覆、化学键合等方式使聚合物与药物相结合,提升了响应环境下药物运输与释放的方式与能力。因此,本工作对近年来响应性脂肪族聚碳酸酯的研究进展进行了综述,主要阐述了具有外环境刺激响应(pH、光、温度和氧化还原)脂肪族聚碳酸酯的合成、响应原理、在药物传递和释放方面的应用。  相似文献   

7.
在光气、二氯磷酸溴乙酯和双酚A反应后,用三甲胺季铵化侧链,得到了4种两亲性磷酸酯-碳酸酯共聚物.用IR、1HNMR及元素分析表征了共聚物,测量了水接触角和Mn,研究了其在pH为7.4磷酸盐缓冲溶液中的降解性能.制得了共聚物微球,并研究了微球的形态、粒径及其对抗肿瘤药物5-Fu的释放性能.  相似文献   

8.
癸二酸-二苯并-18-冠-6共聚物的合成   总被引:2,自引:0,他引:2  
脂肪族二元羧酸与二苯并 18 冠 6在多聚磷酸中进行酰基化反应,可以制得酮型冠醚聚合物,二元酸的分子链长度会影响聚合反应的难易程度.对聚合反应条件进行优化控制,可以制得分子量高、成膜性能良好的癸二酸 二苯并 18 冠 6共聚物.  相似文献   

9.
以丙烯酸异丁酯(IBA)、甲基丙烯酸二甲氨乙酯(DMAEMA)、丙烯酸羟乙酯(HEA)作为聚合单体,利用种子微乳液聚合制备了一种具有核-壳结构的聚合物纳米胶粒P(DMAEMA-co-IBA)/P(IBA-co-HEA);采用红外光谱仪、动态激光光散射仪、透射电镜分析了所得胶粒的结构和形貌;将叶酸成功嵌入聚合物胶粒,得到直径约293nm的球形载药胶粒,利用药物体外释放测定了药物运载性能.结果表明,所制备的共聚物纳米胶粒呈球形,直径约275nm,粒径分布较窄,并具有核-壳结构;其对药物具有缓释性和pH响应性.  相似文献   

10.
以苯酚和含有不同链长的长链脂肪酮作为原料, 制备了与双酚A结构相似的双酚单体, 并与4, 4'-二氟二苯酮共聚, 合成了几种含有不同长度脂肪族侧链结构的聚醚醚酮类(PEEKs)聚合物. 利用元素分析和核磁共振氢谱(1H NMR)对所合成的双酚单体进行了表征, 并用红外光谱(FTIR)\, 示差量热扫描仪(DSC)、热失重分析仪(TGA)和电子拉力机对所合成的聚合物结构和性能的关系进行了研究.  相似文献   

11.
A critical review: the ring-opening polymerization of cyclic esters provides access to an array of biodegradable, bioassimilable and renewable polymeric materials. Building these aliphatic polyester polymers into larger macromolecular frameworks provides further control over polymer characteristics and opens up unique applications. Polymer stars, where multiple arms radiate from a single core molecule, have found particular utility in the areas of drug delivery and nanotechnology. A challenge in this field is in understanding the impact of altering synthetic variables on polymer properties. We review the synthesis and characterization of aliphatic polyester polymer stars, focusing on polymers originating from lactide, ε-caprolactone, glycolide, β-butyrolactone and trimethylene carbonate monomers and their copolymers including coverage of polyester miktoarm star copolymers. These macromolecular materials are further categorized by core molecules, catalysts employed, self-assembly and degradation properties and the resulting fields of application (262 references).  相似文献   

12.
We report a series of biocompatible and biodegradable block copolymers of poly(ε‐caprolactone) with “clickable” polyphosphoester (PPE). The block copolymers are synthesized through controlled ring‐opening polymerization of five‐membered cyclic phosphoester monomer, propargyl ethylene phosphate (PAEP), initiated with poly(ε‐caprolactone) macroinitiator. The polymerization followed first‐order kinetics with living polymerization characteristics, thus the molecular weight and composition of copolymers are tunable by adjusting the feed ratio of PAEP monomer to macroinitiator. Azide‐functionalized poly(ethylene glycol) has been grafted to the copolymer to demonstrate the reactive feasibility by Cu(I)‐catalyzed “click” chemistry of azides and alkynes, generating “brush‐coil” polymers. The mild conditions associated with the click reaction are shown to be compatible with poly(ε‐caprolactone) and PPE backbones, rendering the click reaction a generally useful method for grafting numerous types of functionality onto the block copolymers. The block copolymers also show good biocompatibility to cells, suggesting their suitability for a range of biomaterial applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
We describe the use of organic catalysis for the ring‐opening polymerization of functionalized lactones and conversion of the resulting aliphatic polyesters into crosslinked nanoparticles that carry additional functional groups amenable to further modification. Specifically, highly functional aliphatic polyester homopolymers, as well as random and block copolymers, were prepared by 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene catalysis, giving polyesters with pendent alkene and alkyne groups. Azide‐alkyne click and thiol‐ene chemistries were used for postpolymerization modification of diblock copolymers possessing alkene groups on one block and alkyne groups on the other block. The polyesters were crosslinked using azide/alkyne cycloaddition, by reaction of α,ω‐diazides with the pendent alkynes on the polyester backbone. This gave polyester nanoparticles possessing alkene functionality, which were subjected to further modification using thiol‐ene reactions to introduce additional functionality. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
This article reports the synthesis and copolymerization of 6‐hydroxynon‐8‐enoic acid lactone. The ring‐opening polymerization of this lactone‐type monomer bearing a pendant allyl group led to new homopolymers and random copolymers with ε‐caprolactone and L ,L ‐lactide. The copolymerizations were carried out at 110 °C with Sn(Oct)2 as a catalyst. The introduction of unsaturations into the aliphatic polyester permitted us to carry out different chemical transformations on this family of polymers. For example, this article reports the bromination, epoxidation, and hydrosylilation of the allyl group in the new polyester copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 870–875, 2000  相似文献   

15.
In this study, the synthesis of an allyl functionalized aliphatic polyester and the subsequent oxidation of the double bonds was investigated. Allylglycolide (3-allyl-1,4-dioxane-2,5-dione) was synthesized and its homopolymer and copolymers with l-lactide were prepared by ring opening polymerization in the melt using benzyl alcohol and SnOct2 as initiator and catalyst, respectively. The polymerizations proceeded with high yields and conversions and good control over molecular weights and copolymer composition. The obtained polymers were amorphous materials and their Tg increased with increasing lactide content. Dihydroxylation of the double bonds in poly(allylglycolide) and copolymers with lactide was attempted with osmiumtetroxide/4-methylmorpholine-4-oxide (OsO4/NMO). However, particularly the polymers rich in allylglycolide could not be isolated after dihydroxylation because they likely underwent degradation during workup. Optimizing the reaction conditions gave partially dihydroxylated copolymers only for copolymers with high lactide content (50 and 75 mol%) with a conversion of the double bonds of only ∼60%. GPC analysis showed that chain scission had occurred during the dihydroxylation reaction and/or workup.The allyl groups of poly(allylglycolide) homopolymers and copolymers with lactide were oxidized using m-chloroperoxy benzoic acid (mCPBA) to yield the corresponding epoxidated polymers in high yield. NMR analysis showed that conversion of the double bonds to epoxides was quantitative, whereas GPC analysis showed that the epoxidation was not associated with chain scission. All epoxidated polymers were amorphous materials with a Tg depending on the composition.  相似文献   

16.
Diblock copolymers, in which both blocks are composed of aliphatic polyesters, were synthesized from two different alkyne‐functionalized δ‐valerolactone monomers by ring opening polymerization and subsequent click cycloaddition. Trimethylsilyl protection of the alkyne functionality of one block was instrumental to the success of the synthesis. These novel aliphatic polyester diblock copolymers were characterized by 1H and 13C NMR spectroscopy, gel permeation chromatography (GPC), and infrared (IR) spectroscopy. Sequential functionalization of the diblock copolymers with hydrophobic groups on one block, and hydrophilic groups on the other block, provides access to amphiphilic structures. Micellar structures generated from these polyester amphiphiles were characterized by fluorescence spectroscopy and transition electron microscopy (TEM). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

17.
Poly(lactic acid) and its copolymers are regarded as the most useful biomaterials. The good biocompatibility, biodegradability and mechanical properties of them make the synthetic biodegradable polymers have primary application to tissue engineering. The advantages and disadvantages of the synthetic biodegradable polymers as cell scaffold materials are evaluated, This article reviews the modification of polylactide-family aliphatic polymers to improve the cell affinity when the polymers are used as cell scaffolds. We have developed four main approaches: to modify polyester cell scaffolds in combination of plasma treating and collagencoating; to introduce hydrophilic segments into aliphatic polyester backbones; to introduce pendant functional groups into polyester chains ; to modify polyester with dextran. The results of the cell cultures prove that the approaches mentioned above have improved the cell affinity of the polyesters and have modulated cell function such as adhesion, proliferation and migration.  相似文献   

18.
以丙三醇、1,6-己二醇和己二酸为共聚单体,以固定化脂肪酶Novozym435为催化剂,尝试先进行共聚单体的预聚后在有机介质中进行酶催化直接缩聚反应合成脂肪族超支化聚酯的新途径,考察了反应介质和反应温度对酶催化缩聚反应的影响,并采用凝胶渗透色谱和核磁共振确定产物的分子量和结构.结果表明,将单体的预聚与酶催化缩聚反应相结...  相似文献   

19.
The radical homopolymerization of methyl methacrylate and styrene in the presence of polyimide that contains aliphatic moieties and is dissolved in the monomer is studied. The viscosity characteristics, heat resistances, and thermal stabilities of the resulting polymers and their solubilities in organic solvents are examined. It is found that the products of radical polymerization are polyimide-poly(methyl methacrylate) and polyimide-polystyrene copolymers, whose properties differ from those of the respective unmodified polymerization and polycondensation polymers.  相似文献   

20.
Lu  Min  Zhu  Xiang  Li  Xiao-hong  Yang  Xiao-ming  Tu  Ying-feng 《高分子科学》2017,35(9):1051-1060
We present here the first synthesis of cyclic oligo(ethylene adipate)s(COEAs) via pseudo-high dilution condensation reaction of adipoyl chloride with ethylene glycol, and the synthesis of corresponding poly(ethylene adipate)(PEA) via the melt polymerization of COEAs. The structure of COEAs was characterized and proved by 1H-NMR and MALDI-TOF mass measurements. The effects of organic base, reaction temperature and the ratio of adipoyl chloride to ethylene glycol on the yield of COEAs were studied, and the optimum reaction condition was revealed. PEA, a diacid and diol based semi-crystalline green aliphatic polyester, was synthesized by the melt polymerization of COEAs using Ti(n-C4H9O)4 as catalyst and 1,10-decanediol as initiator at 200 °C, which follows the polycondensation-coupling ringopening polymerization method. Our strategy should be applicable to the synthesis of versatile aliphatic polyesters based on diacid and diol monomers, which have potential applications as biocompatible and biodegradable materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号