首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method to prepare plasmonically active noble metal nanostructures on large surface area silicon nanowires (SiNWs) mediated by atomic layer deposition (ALD) technology has successfully been demonstrated for applications of surface‐enhanced Raman spectroscopy (SERS)‐based sensing. As host material for the plasmonically active nanostructures we use dense single‐crystalline SiNWs with diameters of less than 100 nm as obtained by a wet chemical etching method based on silver nitrate and hydrofluoric acid solutions. The SERS active metal nanoparticles/islands are made from silver (Ag) shells as deposited by autometallography on the core nanoislands made from platinum (Pt) that can easily be deposited by ALD in the form of nanoislands covering the SiNW surfaces in a controlled way. The density of the plasmonically inactive Pt islands as well as the thickness of noble metal Ag shell are two key factors determining the magnitude of the SERS signal enhancement and sensitivity of detection. The optimized Ag coated Pt islands on SiNWs exhibit great potential for ultrasensitive molecular sensing in terms of high SERS signal enhancement ability, good stability and reproducibility. The plasmonic activity of the core‐shell Pt//Ag system that will be experimentally realized in this paper as an example was demonstrated in numerical finite element simulations as well as experimentally in Raman measurements of SERS activity of a highly diluted model dye molecule. The morphology and structure of the core‐shell Pt//Ag nanoparticles on SiNW surfaces were investigated by scanning‐ and transmission electron microscopy. Optimized core–shell nanoparticle geometries for maximum Raman signal enhancement is discussed essentially based on the finite element modeling.  相似文献   

2.
Surface-enhanced Raman scattering from ordered Ag nanocluster arrays   总被引:2,自引:0,他引:2  
We have examined the effect of ordered silver nanocluster substrates on the surface-enhanced Raman spectrum of rhodamine 6G (R6G). Triangular shaped silver nanocluster arrays with order on the approximately 100 mum range were prepared using nanosphere lithography. Direct comparisons of R6G surface-enhanced Raman spectroscopy (SERS) signals between ordered nanocluster regions and amorphous Ag regions prepared under identical deposition conditions provide strong evidence of an electromagnetic field enhancement attributed to the unique nanocluster morphology. We have obtained order of magnitude enhancement factors for both 200 and 90 nm Ag nanocluster SERS substrates relative to Ag films.  相似文献   

3.
A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). Accordingly, although no Raman signal is observable when 4-aminobenzenethiol (4-ABT), for instance, is self-assembled on a flat Au substrate, a distinct spectrum is obtained when Ag or Au nanoparticles are adsorbed on the pendent amine groups of 4-ABT. This is definitely due to the electromagnetic coupling between the localized surface plasmon of Ag or Au nanoparticle with the surface plasmon polariton of the planar Au substrate, allowing an intense electric field to be induced in the gap even by visible light. To appreciate the Raman scattering enhancement and also to seek the optimal condition for SERS at the nanogap, we have thoroughly examined the size effect of Ag nanoparticles, along with the excitation wavelength dependence, by assembling 4-ABT between planar Au and a variable-size Ag nanoparticle (from 20- to 80-nm in diameter). Regarding the size dependence, a higher Raman signal was observed when larger Ag nanoparticles were attached onto 4-ABT, irrespective of the excitation wavelength. Regarding the excitation wavelength, the highest Raman signal was measured at 568 nm excitation, slightly larger than that at 632.8 nm excitation. The Raman signal measured at 514.5 and 488 nm excitation was an order of magnitude weaker than that at 568 nm excitation, in agreement with the finite-difference time domain simulation. It is noteworthy that placing an Au nanoparticle on 4-ABT, instead of an Ag nanoparticle, the enhancement at the 568 nm excitation was several tens of times weaker than that at the 632.8 nm excitation, suggesting the importance of the localized surface plasmon resonance of the Ag nanoparticles for an effective coupling with the surface plasmon polariton of the planar Au substrate to induce a very intense electric field at the nanogap.  相似文献   

4.
This article reports the designed preparation of two different kinds of novel porous metal nanostructured films, namely, an ordered macroporous Au/Ag nanostructured film and an ordered hollow Au/Ag nanostructured film. Different from previous reports, the presently proposed method can be conveniently used to control film structures by simply varying the experimental conditions. The morphology of these films has been characterized by scanning electron microscopy (SEM), and their performance as surface-enhanced Raman scattering (SERS) substrates has been evaluated by using rhodamine 6G (R6G) as a probe molecule. We show that such porous nanostructured films consisting of larger interconnected aggregates are highly desirable as SERS substrates in terms of high Raman intensity enhancement, excellent stability, and reproducibility. The interconnected nanostructured aggregate, long-range ordering porosity, and nanoscale roughness are important factors responsible for this large SERS enhancement ability.  相似文献   

5.
The authors preparedlarge area surface-enhanced Raman scattering(SERS) active substrates with tunable enhancement. First the large area gratings were fabricated by scanning a photoresist with two-beam laser interference and subsequently they were coated with silver nano islands via vacuum evaporation. SERS active metal island grating substrates with four different periods(300, 400, 515 and 600 nm) and Ag nano islands uniformly coated on an area of 2.5 cm×0.5 cm were obtained. The measured SERS spectra reveal the tuning effect of the period on the Raman signals period. The highest enhancement(ca. 105) for Rhodamine 6G(R6G) as probing molecule is associated with a period of 515 nm due to the perfect matching of surface plasmons and Raman excitation line. A good reproducibility of SERS signals with almost the same SERS intensity at different spots was observed on all the larger area Ag island grating substrates.  相似文献   

6.
在表面增强拉曼光谱(SERS)的研究领域中,基于局域表面等离子体共振效应的等离子体SERS基底的制备成为过去几十年的研究热点。然而,通常开发的等离子体金属基底具有较差的稳定性和重现性。对于SERS而言,石墨烯类材料具有拉曼化学增强效应,除此之外,还具有分子富集、强的稳定性与荧光猝灭能力等优点,因此基于石墨金属复合纳米材料的SERS基底受到了研究人员的重视。我们利用化学气相沉积(CVD)法制备了小尺寸的金石墨核壳纳米颗粒(Au@G),其粒径约为17 nm。我们通过在Au NP上包覆介孔二氧化硅来控制Au@G的尺寸,同时还研究了包覆二氧化硅过程中,正硅酸乙酯(TEOS)的浓度对于石墨壳层形成的影响。结果表明当TEOS在一定浓度范围内,其浓度的降低有利于得到石墨化程度高的Au@G。进一步利用Au@G对结晶紫分子进行拉曼检测,也表明了Au@G具有较好的拉曼增强效果。这种小尺寸的Au@G在分子检测与细胞成像分析领域中具有广泛的应用潜力。  相似文献   

7.
Palladium is an important catalytic metal, and it is desirable to develop a surface-enhanced Raman scattering (SERS) technique to investigate the reagent and product species adsorbed on its surface. Unfortunately, Pt-group metals, e.g., Pt and Pd, have been commonly considered as non- or weak-SERS-active substrates. In this work, Ag and Pd thin films were deposited very efficiently and evenly onto the surface of glass substrates by using only corresponding metal nitrate salts (AgNO3 and Pd(NO3)2) with butylamine in ethanolic solutions. In this process, pure ethanol was used for Ag deposition, while an ethanol–water (8:2) mixture was used for Pd deposition. The as-prepared Ag and Pd films exhibited SERS activity over a large area. The surface-induced photoconversion capabilities of these Ag and Pd films were then tested on 4-nitrobenzenethiol by means of SERS. It was found that at least under visible laser irradiation, the surface-catalyzed photoreaction occurs more readily on a Ag film than on a Pd film for the conversion of 4-nitrobenzenethiol to 4-aminobenzenethiol, even though Pd is known to be an important transition metal with high catalytic activity.  相似文献   

8.
通过湿法化学合成基于SiO2胶体晶体的大面积有序Au/Ag纳米碗(Au/AgNB)阵列。首先,在玻璃基板上组装3D SiO2胶体晶体作为模板。然后,以Au纳米颗粒(AuNP)为种子,通过原位生长法在SiO2模板上沉积一层Au纳米壳(AuNS)。再通过HCHO还原Ag+成Ag0,进一步在AuNS表面沉积Ag纳米壳,形成Ag/Au双纳米壳(Ag/AuNS)阵列。最后通过丙烯酸酯改性双向取向聚丙烯(BOPP)膜方便地获得了单层有序反转Ag/AuNB阵列。这种有序Au/AgNB阵列具有更佳的表面增强拉曼散射(SERS)活性,其SERS分析增强因子(AEF)可达2.23×107。  相似文献   

9.
通过湿法化学合成基于SiO2胶体晶体的大面积有序Au/Ag纳米碗(Au/AgNB)阵列。首先,在玻璃基板上以3D SiO2胶体晶体作为模板。然后,在Au纳米颗粒(AuNP)种子的帮助下,通过原位生长方法在模板上沉积一层Au纳米壳(AuNS)。再通过HCHO还原Ag+使AuNS表面进一步沉积Ag纳米壳,形成Ag/Au双纳米壳(Ag/AuNS)阵列。通过丙烯酸酯改性双向取向聚丙烯(BOPP)方便地获得了单层有序反转Ag/AuNB阵列。这种有序Au/AgNB阵列具有更佳的表面增强拉曼散射(SERS)活性,其SERS分析增强因子(AEF)可达2.23×107。  相似文献   

10.
After over 30 years of development, surface-enhanced Raman spectroscopy (SERS) is now facing a very important stage in its history. The explosive development of nanoscience and nanotechnology has assisted the rapid development of SERS, especially during the last 5 years. Further development of surface-enhanced Raman spectroscopy is mainly limited by the reproducible preparation of clean and highly surface enhanced Raman scattering (SERS) active substrates. This review deals with some substrate-related issues. Various methods will be introduced for preparing SERS substrates of Ag and Au for analytical purposes, from SERS substrates prepared by electrochemical or vacuum methods, to well-dispersed Au or Ag nanoparticle sols, to nanoparticle thin film substrates, and finally to ordered nanostructured substrates. Emphasis is placed on the analysis of the advantages and weaknesses of different methods in preparing SERS substrates. Closely related to the application of SERS in the analysis of trace sample and unknown systems, the existing cleaning methods for SERS substrates are analyzed and a combined chemical adsorption and electrochemical oxidation method is proposed to eliminate the interference of contaminants. A defocusing method is proposed to deal with the laser-induced sample decomposition problem frequently met in SERS measurement to obtain strong signals. The existing methods to estimate the surface enhancement factor, a criterion to characterize the SERS activity of a substrate, are analyzed and some guidelines are proposed to obtain the correct enhancement factor.  相似文献   

11.
This paper describes a method to pattern surfaces with Au-Ag hybrid nanoparticles. We used block copolymer micelle lithography of Au nanoparticles and electroless deposition of Ag. The combination of these two methods enables independent tuning of nanoparticle spacing and Ag-shell size. For this purpose, 8 nm large patterned Au nanoparticle seeds served as nuclei for the electroless deposition of silver that is based on a modified Tollens process with glucose. By adjusting the reaction conditions, specific growth of Ag on top of the Au seeds has been accomplished and analyzed by SEM, HRTEM, XEDS, and UV-vis spectroscopy. We could show that this versatile and green method is feasible on glass as well as on biomedical-relevant polymers like poly(ethylene glycol) hydrogels and amorphous Teflon. In conclusion, this method provides a new route to pattern glass and polymeric surfaces with Au-Ag hybrid nanoparticles. It will have many uses in applications such as surface enhanced Raman spectroscopy (SERS) or antimicrobial coatings for which hybrid nanoparticle density, size, and morphology are important.  相似文献   

12.
Self-assembled monolayers (SAMs) of functionalized azobenzene thiols (RAzoCnSH, n=3-6 for R=H, abbreviated as AzoCnSH; and n=4 for R=CH(3)CONH, abbreviated as aaAzoC4SH) on different substrates RAzoCnSz.sbnd;z.sfnc;S (S represents substrates of vacuum-deposited gold (Au), silver foil (Ag), HNO(3) etched silver foil (EAg), and silver mirror (mAg)) have been studied by SERS in the near-infrared region. SERS of the SAMs on EAg and/or mAg exhibit SERS effects that vary with etching time and/or deposition time. The most appropriate time is 5 s for etching in 1:1 HNO(3) and 40 s for deposition in 0.1 M Ag(NH(3))(2)NO(3). Further, a layer of Ag mirror was conveniently deposited on the top of the SAMs on different substrates, yielding a more efficient SERS-active system possessing a "sandwiched" structure of mAgz.sfnc;RAzoCnS-z.sfnc;S. An appropriate surface roughness is required for the strongest SERS effect. Scanning electron microscopy (SEM) indicates that there exist a large number of projects around 100 nm on the surface showing the strongest SERS effect. When the surface roughness is decreased or increased, the SERS effect decreases sharply. The relationship between the SERS effect and the structural nature was investigated and showed that the enhancement factor decays exponentially with increasing in distances of the azobenzene group from the underlying substrate or the overlying silver mirror. This result reveals that the SERS effect may be the result of the electromagnetic coupling effect between two metal layers.  相似文献   

13.
Three‐dimensional nanostructured metallic substrates for enhanced vibrational spectroscopy are fabricated by self‐assembly. Nanostructures consisting of one to 20 depositions of 13 nm‐diameter Au nanoparticles (NPs) on Au films are prepared and characterized by means of AFM and UV/Vis reflection–absorption spectroscopy. Surface‐enhanced polarization modulation infrared reflection–absorption spectroscopy (PM‐IRRAS) is observed from Au NPs modified by the probe molecule 4‐hydroxythiophenol. The limitation of this kind of substrate for surface‐enhanced PM‐IRRAS is discussed. The surface‐enhanced Raman scattering (SERS) from the same probe molecule is also observed and the effect of the number of Au‐NP depositions on the SERS efficiency is studied. The SERS signal from the probe molecule maximizes after 11 Au‐NP depositions, and the absolute SERS intensities from different batches are reproducible within 20 %. In situ electrochemical SERS measurements show that these substrates are stable within the potential window between ?800 and +200 mV (vs. Ag/AgCl/sat. Cl?).  相似文献   

14.
Highly ordered gold nanoparticle multilayer films were achieved conveniently using didodecyldimethylammonium bromide (DDAB) films as a template. The template was produced by casting DDAB chloroform solution onto the surface of a (3-aminopropyl)trimethoxysilane-modified indium tin oxide substrate and then evaporating the organic solvent. Gold nanoparticle multilayer films were prepared by soaking the template in 2.6 nm colloidal gold solution for 120 min. The well-ordered superlattice structure of the DDAB template and the gold nanoparticle multilayer films was identified by x-ray diffraction. The characterizations of the gold nanoparticle multilayer films by UV-vis spectroscopy, atomic force microscopy, and cyclic voltammerty were described in detail. The application of the as-prepared gold nanoparticle multilayer films in surface-enhanced Raman spectroscopy (SERS) was investigated by using Rhodamine 6G as a probe molecule. It was found that the colloidal gold nanoparticle multilayer films exhibit remarkable enhancement ability and can be used as SERS substrates.  相似文献   

15.
Raman spectroscopy on transition metals   总被引:2,自引:0,他引:2  
Surface-enhanced Raman spectroscopy (SERS) has developed into one of the most important tools in analytical and surface sciences since its discovery in the mid-1970s. Recent work on the SERS of transition metals concluded that transition metals, other than Cu, Ag, and Au, can also generate surface enhancement as high as 4 orders of magnitude. The present article gives an overview of recent progresses in the field of Raman spectroscopy on transition metals, including experimental, theory, and applications. Experimental considerations of how to optimize the experimental conditions and calculate the surface enhancement factor are discussed first, followed by a very brief introduction of preparation of SERS-active transition metal substrates, including massive transition metal surfaces, aluminum-supported transition metal electrodes, and pure transition metal nanoparticle assembled electrodes. The advantages of using SERS in investigating surface bonding and reaction are illustrated for the adsorption and reaction of benzene on Pt and Rh electrodes. The electromagnetic enhancement, mainly lightning-rod effect, plays an essential role in the SERS of transition metals, and that the charge-transfer effect is also operative in some specific metal–molecule systems. An outlook for the field of Raman spectroscopy of transition metals is given in the last section, including the preparation of well-ordered or well-defined nanostructures, and core-shell nanoparticles for investigating species with extremely weak SERS signals, as well as some new emerging techniques, including tip-enhanced Raman spectroscopy and an in situ measuring technique. Figure Electric-field enhancement of a SERS-active Rh surface decorated with small nanohemispheres  相似文献   

16.
A novel laser electrodispersion (LE) technique was employed to deposit gold nanoparticles onto Si and SiO(x) surfaces. The LE technique combines laser ablation with cascade fission of liquid metal micro-drops, which results in the formation of nanoparticles upon rapid cooling. The shape and the size distribution of the Au nanoparticles prepared by LE depend on the nature of the support. Gold nanoparticles were also deposited in the channels of microreactors fabricated by wet etching of Si and used as SE(R)RS sensors. The influence of the nanoparticle surface density as well as of the nature of the substrate on the Raman response was studied. At an appropriate surface density of the deposited nanoparticles a significant enhancement of Raman signal was observed showing the possibility to create efficient SERS substrates. Application of microfluidic devices in surface enhanced Raman spectroscopy (SERS) in continuous-flow mode with sensor regeneration is described.  相似文献   

17.
《Vibrational Spectroscopy》2000,22(1-2):39-48
Surface Enhanced Raman Spectroscopy (SERS) is a valuable analytical tool for the investigation of molecules adsorbed on roughened noble metal surfaces. The shape, size, and surrounding of the metal protrusions play an important role in the Raman scattering enhancement. By combining scanning near-field optical microscopy (SNOM) with Raman spectroscopy the spatial resolution suffices for investigating isolated silver islands on SERS active substrates. We demonstrate an optical resolution below 70 nm for recording spectra on specifically prepared and fully characterized SERS substrates. For a quantitative evaluation of the SERS signal the spatial distribution of Rhodamine 6G (R6G) deposited on the SERS substrate was determined by friction force measurements. By comparing the Raman intensities of the SERS substrates with those of unmetallized support plates absolute SERS enhancement factors at specific locations on top and in the vicinity of the silver islands were determined directly.  相似文献   

18.
This paper reports a study on the preparation of Ag-clad Au colloidal monolayer films by a combination of colloid self-assembly and liquid phase microwave high-pressure technique. Firstly, monodisperse Au nanoparticles prepared by microwave heating method were assembled onto a quartz slide. Then, these Au colloidal particles on the quartz surface acted as seeds for growing the Ag-clad Au composite particulate films. The obtained particulate films were characterized by UV-Vis spectra and atomic force microscopy. It was found that the thickness of the shell and thus the size of particles in the composite colloidal films could be controlled by deposition of Ag on the preformed Au colloidal particle film in the microwave reaction system, and such films significantly increased the surface-enhanced Raman scattering enhancement (SERS) ability compared with Au colloidal particle films. Their strong enhancement ability may mainly stem from relatively large particle consisting of Ag cladding as well as effective coupling among particles in the Ag-clad Au particle ftlms.  相似文献   

19.
赵乔  逯丹凤  陈晨  祁志美 《物理化学学报》2014,30(12):2335-2341
采用溶胶-凝胶分子模板法在50 nm厚金膜表面制备约40 nm厚介孔二氧化硅(MPS)薄膜,然后在MPS薄膜表面静电自组装金纳米粒子(GNP)单层膜,形成的多层膜结构用作表面增强拉曼散射(SERS)基底.利用扫描电镜观测到MPS薄膜具有表面开口多孔结构,有助于小分子向薄膜内快速扩散.基于时域有限差分(FDTD)方法对电场分布的仿真结果指出,在表面等离子体共振(SPR)条件下分布于金膜与GNP之间的消逝场显著增强.由于空间重叠,该增强场能够高效激发MPS内富集的小分子拉曼信号,产生的拉曼信号还可免受金属作用的干扰.利用Kretschmann结构和尼罗蓝(NB)拉曼活性分子测试了Au/MPS/GNP基底在785 nm激发波长下的SERS效果,并与Au/GNP基底进行了比较.结果表明,在SPR条件下,Au/MPS/GNP基底能够导致较强的定向和背向拉曼信号,而且在586 cm-1处的背向拉曼信号强度是Au/GNP基底的40倍,这归功于MPS薄膜.进一步测试表明背向拉曼信号强度与NB浓度成正相关.这意味着Au/MPS/GNP基底具有良好的半定量检测本领.  相似文献   

20.
The formation mechanism and morphology of Au-Ag bimetallic colloidal nanoparticles depend on the composition. Ag coated Au colloidal nanoparticles have been prepared by deposition of Ag through chemical reduction on performed Au colloid. The composition of the Au(100-x)-Ag(x) particles was varied from x=0 to 50. The obtained colloids were characterized by UV-vis spectroscopy and transmission electron microscopy (TEM). The Au(80)-Ag(20) colloid consists of alloy nanorods with dimension of 25nmx100nm. The activity of these nanorods in surface enhanced Raman spectroscopy (SERS) was checked by using sodium salicylate as an adsorbate probe. Intense SERS bands are observed indicating its usefulness as a SERS substrate in near infrared (NIR) laser excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号