首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Stereoregular poly(methyl methacrylate)s (PMMAs) were stepwise assembled on a quartz crystal microbalance (QCM) substrate after the immersion of the QCM into alternating acetonitrile solutions at ambient temperature. A quantitative QCM analysis at each step showed stereocomplex formation on the substrate surface. The adsorption of bovine serum albumin (BSA) onto stereocomplex films with a molecularly regulated nanostructure was analyzed quantitatively. The adsorption constant and the maximum adsorption amount, calculated by the assumption of Langmuir‐type adsorption, showed that BSA adsorbed with a relatively weak interaction onto the stereocomplex films. The BSA adsorption onto the stereocomplex films occurred in an end‐on manner, with a smaller adsorption constant than for that onto individual spin‐coated films. The amount of BSA adsorbed was significantly affected by the molecular weight of syndiotactic PMMA. Attenuated total reflection spectra indicated that BSA adsorbed onto the films with or without denaturing. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1807–1812, 2003  相似文献   

2.
Adsorption and deposition of asphaltenes onto differently coated (hydrophilic surfaces: silica, titanium, alumina, and a noncommercial tailor‐made FeOx) quartz crystals from heptane/toluene (1∶1) and toluene solutions have been studied with the quartz crystal microbalance method with dissipation measurements (QCM‐D). The results show that the adsorbed mass is related to the solubility state of asphaltenes (aromaticity of the solvent), their origin (aggregate size in solution) and very little to the hydrophilicity of the investigated crystal. Adsorption/deposition of asphaltenes depends on their solubility. We found two cases: Either the asphaltenes are solubilized, or the asphaltenes are partly solubilized and partly precipitated. In the former case, asphaltenes are bounded very tightly to the surface and poorly for the latter. The change in solution composition due to decrease in asphaltene solvency causes formation of a variety of asphaltenes species. The results also were compared and discussed in relation to adsorption onto particles, determined with the UV depletion method. The study shows that QCM‐D method is a very useful tool to study the mechanisms and the effects of solvency of asphaltenes. We discuss and compare the different techniques.  相似文献   

3.
The adsorption of a 14-amino acid amphiphilic peptide, LK14, which is composed of leucine (L, nonpolar) and lysine (K, charged), on hydrophobic polystyrene (PS) and hydrophilic silica (SiO2) was investigated in situ by quartz crystal microbalance (QCM), atomic force microscopy (AFM), and sum frequency generation (SFG) vibrational spectroscopy. The LK14 peptide, adsorbed from a pH 7.4 phosphate-buffered saline (PBS) solution, displayed very different coverage, surface roughness and friction, topography, and surface-induced orientation when adsorbed onto PS versus SiO2 surfaces. Real-time QCM adsorption data revealed that the peptide adsorbed onto hydrophobic PS through a fast (t < 2 min) process, while a much slower (t > 30 min) multistep adsorption and rearrangement occurred on the hydrophilic SiO2. AFM measurements showed different surface morphologies and friction coefficients for LK14 adsorbed on the two surfaces. Surface-specific SFG spectra indicate very different ordering of the adsorbed peptide on hydrophobic PS as compared to hydrophilic SiO2. At the LK14 solution/PS interface, CH resonances corresponding to the hydrophobic leucine side chains are evident. Conversely, only NH modes are observed at the peptide solution/SiO2 interface, indicating a different average molecular orientation on this hydrophilic surface. The surface-dependent difference in the molecular-scale peptide interaction at the solution/hydrophobic solid versus solution/hydrophilic solid interfaces (measured by SFG) is manifested as significantly different macromolecular-level adsorption properties on the two surfaces (determined via AFM and QCM experiments).  相似文献   

4.
The n‐octadecyltrichlorosilane (OTS, CH3(CH2)17SiCl3), 18‐nonadecenyltrichlorosilane (NTS, CH2=CH(CH2)17SiCl3), [2‐(perfluorooctyl)ethyl] trichlorosilane (FOETS, CF3(CF2)7CH2CH2SiCl3) monolayers, and their mixed monolayers were used as the model substrates for the study of protein adsorption mechanism. Surface plasmon resonance (SPR) spectroscopy was applied to analyze the protein adsorption behavior onto the surface of the monolayers. Atomic force microscope (AFM) was used to observe the monolayer surfaces after exposure of these monolayers to bovine serum albumin (BSA) and γ‐globulin(IgG) solution. AFM observation revealed that the charged protein either below or above the isoelectric point was preferentially adsorbed onto the FOETS phase of the (OTS/FOETS) mixed monolayer. SPR revealed that the amount of adsorbed protein in the charged state was lower than that in the neutral state. These results indicate that the preferential adsorption of protein onto the FOETS phase for the mixed monolayer systems at either below or above pI is due to (1) the minimization of interfacial free energy between the monolayer surface and the buffer solution, and (2) the electrostatic repulsion among protein molecules bearing charges.  相似文献   

5.
Adsorption of glucose oxidase (GOD) onto plasma-polymerized thin films (PPF) with nanoscale thickness was characterized by atomic force microscopy (AFM), quartz crystal microbalance (QCM), and electrochemical measurements. The PPF surface is very flat (less than 1-nm roughness), and its properties (charge and wettability) can be easily changed while retaining the backbone structure. We focused on three types of surfaces: (1) the pristine surface of hexamethyldisiloxane (HMDS) PPF (hydrophobic and neutral surface), (2) an HMDS PPF surface with nitrogen-plasma treatment (hydrophilic and positive-charged surface), and (3) an HMDS PPF surface treated with oxygen plasma (hydrophilic and negative-charged surface). The AFM image showed that the GOD molecules were densely adsorbed onto surface 2 and that individual GOD molecules could be observed. The longer axis of GOD ellipsoid molecules were aligned parallel to the surface, called the "lying position", because of electrostatic association. On surface 1, clusters of GOD molecules did not completely cover the original PPF surface (surface coverage was ca. 60%). The 10-nm-size step height between the GOD clusters and the PPF surface suggests that the longer axes of individual GOD molecules were aligned perpendicular to the surface, called the "standing position". On surface 3, only a few of the GOD molecules were adsorbed because of electrostatic repulsion. These results indicate that the plasma polymerization process can facilitate enhancement or reduction of protein adsorption. The AFM images show a corresponding tendency with the QCM profiles. The QCM data indicate that the adsorption behavior obeys the Langmuir isotherm equation. The amperometric biosensor characteristics of the GOD-adsorbed PPF on a platinum electrode showed an increment in the current because of enzymatic reaction with glucose addition, indicating that enzyme activity was mostly retained in spite of irreversible adsorption.  相似文献   

6.
The adsorption of Immunoglobulin G on a titanium dioxide (TiO(2)) electrode surface was investigated using (125)I radiolabeling and electrochemical impedance spectroscopy (EIS). (125)I radiolabeling was used to determine the extent of protein adsorption, while EIS was used to ascertain the effect of the adsorbed protein layer on the electrode double layer capacitance and electron transfer between the TiO(2) electrode and the electrolyte. The adsorbed amounts of Ig.G agreed well with previous results and showed approximately monolayer coverage. The amount of adsorbed protein increased when a positive potential was applied to the electrode, while the application of a negative potential resulted in a decrease. Exposure to solutions of Ig.G resulted in a decrease of the double layer capacitance (C) and an increase in the charge-transfer resistance (R(2)) at the electrode solution interface. As more Ig.G adsorbed onto the electrode surface, the extent of C and R(2) variation increased. These capacitance and charge-transfer resistance variations were attributed to the formation of a proteinaceous layer on the electrode surface during exposure.  相似文献   

7.
8.
利用Langmuir-Blodgett(LB)技术结合原子力显微镜(AFM),研究了牛血清蛋白(BSA)在气/液界面上对二硬脂酰基磷脂酰乙醇胺(DSPE)单层膜结构的影响.通过改变亚相的pH值和BSA浓度,获得了不同条件下DSPE单层膜的等温线、吸附曲线和压缩循环曲线等.实验结果表明,亚相中BSA的存在对DSPE单层膜的压缩性、稳定性以及相变行为产生了较大的影响.吸附动力学结果表明,DSPE单层膜对BSA分子的吸附量存在一定的阈值,且该阈值的大小与亚相pH值相关.通过分析实验数据可知,当亚相pH=3时,BSA的疏水残基几乎全部暴露在外面,2种分子之间的相互作用最强;而pH=7时,BSA仅有少量的疏水残基暴露在外面,2种分子之间的相互作用最弱.原子力显微镜观测到的单层膜形态变化特点与曲线分析结果一致.该研究为了解牛血清蛋白与磷脂分子之间的相互作用机理提供了重要的实验基础和理论依据.  相似文献   

9.
We studied bovine serum albumin (BSA) and α-chymotrypsin adsorption onto mica surfaces over a large pH range by atomic force microscopy (AFM) measurements in liquid. Data analyses (height, roughness and roughness factor) brought new insights on the conformation of proteins in soil environments, with mica as a model of soil phyllosilicates and non-hydrophobic surfaces. Validation of AFM approach was performed on BSA, whose behavior was previously described by nuclear magnetic resonance and infra-red spectroscopic methods. Maximum adsorption was observed near the isoelectric point (IEP). A stronger interaction and a lower amount of adsorbed proteins were observed below the IEP, which contrasted with the progressive decrease of adsorption above the IEP. We then studied the adsorption of α-chymotrypsin, a proteolytic enzyme commonly found in soils. AFM pictures demonstrated a complete coverage of the mica surface at the IEP in contrast to the BSA case. Comparison of the AFM data with other indirect methods broadened the understanding of α-chymotrypsin adsorption process through the direct display of the protein adsorption patterns as a function of pH.  相似文献   

10.
The conversion of adsorbed fibrinogen to fibrin in the presence of the enzyme thrombin was studied using surface plasmon resonance (SPR), a quartz crystal microbalance (QCM), sum frequency generation (SFG), atomic force microscopy (AFM), and an elutability assay. Exposure of adsorbed fibrinogen to thrombin resulted in a mass loss at the surface consistent with fibrinopeptide release and conversion to fibrin. Changes in hydration upon conversion of adsorbed fibrinogen to fibrin were determined from comparisons of acoustic (QCM) and optical (SPR) mass adsorption data. Conversion to fibrin also resulted in the adsorbed layer becoming more strongly bound to the surface and more compact. The elutability of adsorbed fibrinogen by Triton X-100, studied with SPR, decreased from 90 +/- 5 to 6 +/- 2% after conversion to fibrin. The height of the adsorbed monolayer, as determined by AFM, decreased from 5.5 +/- 2.2 to 1.7 +/- 0.8 nm. We conclude that thrombin-catalyzed fibrinopeptide release triggers significant changes in fibrinogen conformation beyond peptide cleavage.  相似文献   

11.
The adsorption characteristics of three proteins [bovine serum albumin (BSA), myoglobin (Mb), and cytochrome c (CytC)] onto self-assembled monolayers of mercaptoundecanoic acid (MUA) on both gold nanoparticles (AuNP) and gold surfaces (Au) are described. The combination of quartz crystal microbalance measurements with dissipation (QCM-D) and pH titrations of the zeta-potential provide information on layer structure, surface coverage, and potential. All three proteins formed adsorption layers consisting of an irreversibly adsorbed fraction and a reversibly adsorbed fraction. BSA showed the highest affinity for the MUA/Au, forming an irreversibly adsorbed rigid monolayer with a side-down orientation and packing close to that expected in the jamming limit. In addition, BSA showed a large change in the adsorbed mass due to reversibly bound protein. The data indicate that the irreversibly adsorbed fraction of CytC is a monolayer structure, whereas the irreversibly adsorbed Mb is present in form of a bilayer. The observation of stable BSA complexes on MUA/AuNPs at the isoelectric point by zeta-potential measurements demonstrates that BSA can sterically stabilize MUA/AuNP. On the other hand, MUA/AuNP coated with either Mb or CytC formed a reversible flocculated state at the isoelectric point. The colloidal stability differences may be correlated with weaker binding in the reversibly bound overlayer in the case of Mb and CytC as compared to BSA.  相似文献   

12.
The influence of small amounts of bovine serum albumin (BSA) (nM concentration) on the lateral organization of phospholipid monolayers at the air-water interface and transferred onto solid substrates as one-layer Langmuir-Blodgett (LB) films was investigated. The kinetics of adsorption of BSA onto the phospholipid monolayers was monitored with surface pressure isotherms in a Langmuir trough, for the zwitterionic dipalmitoylphosphatidyl ethanolamine (N,N-dimethyl-PE) and the anionic dimyristoylphosphatidic acid (DMPA). A monolayer of N,N-dimethyl-PE or DMPA incorporating BSA was transferred onto a solid substrate using the Langmuir-Blodgett technique. Atomic force microscopy (AFM) images of one-layer LB films displayed protein-phospholipid domains, whose morphology was characterized using dynamic scaling theories to calculate roughness exponents. For DMPA-BSA films the surface is characteristic of self-affine fractals, which may be described with the Kardar-Parisi-Zhang (KPZ) equation. On the other hand, for N,N-dimethyl-PE-BSA films, the results indicate a relatively flat surface within the globule. The height profile and the number and size of globules varied with the type of phospholipid. The overall results, from kinetics of adsorption on Langmuir monolayers and surface morphology in LB films, could be interpreted in terms of the higher affinity of BSA to the anionic DMPA than to the zwitterionic N,N-dimethyl-PE. Furthermore, the effects from such small amounts of BSA in the monolayer point to a cooperative response of DMPA and N,N-dimethyl-PE monolayers to the protein.  相似文献   

13.
Adsorption and aggregation of transformed peptides and proteins onto the cell membrane surface is commonly associated with forms of amyloidosis such as Alzheimer's disease and prion disease. To address dynamic features of these pathological phenomena molecularly, the in situ Ad-2alpha model peptide deposition on glycolipid-containing monolayers was studied by using a 9 MHz quartz-crystal microbalance (QCM). The Ad-2alpha peptide has two amphiphilic alpha-helix segments, each modified with a 1-adamantanecarbonyl group at the N-terminal as a hydrophobic defect. The peptide folds in a 2alpha-helix structure in the bulk solution. In the presence of mixed monolayers of glycolipids (GM1, asialo-GM1, GM3, or LacCer) and/or dipalmitoyl phosphatidylcholine (DPPC) laminated on the QCM plate, the peptide deposition and the conformational change to beta-structure on the monolayers were accelerated. The adsorption kinetics and the amount of Ad-2alpha were dependent on the sort and contents of the glycolipid in the DPPC matrix. Although the Ad-2alpha peptide adsorbs onto most of the glycolipid membranes as monolayer coverage, it adsorbed largely onto the GM1/DPPC (30/70 mol%) mixed monolayer with characteristic kinetic behaviors. The accumulation of beta-structured nonfibrous aggregations was confirmed by AFM and fluorescence microscopy with Thioflavin T (ThT).  相似文献   

14.
The adsorption of bovine serum albumin (BSA) onto an anionic monolayer of sodium docosylsulfate (SDocS) spread at the air/water interface was studied by ellipsometry. The adsorption behavior of BSA was estimated from the observed changes in phase differences and in the ratio of reflection coefficients. The dynamic process of BSA adsorption was measured after the injection of BSA solution into the aqueous substrate of SDocS monolayer. The gentle stirring of the substrate solution for 10 min was found to be enough to make the solution homogeneous without damaging the monolayer. The adsorption characteristics of BSA onto a negatively charged surface was compared with that onto a positively charged surface previously reported.The amount of adsorption depended on time and showed a maximum with an initial rapid rise, followed by gradual decrease toward the ultimate equilibrium value. The amount and time of the maximum adsorption depended on the concentration of BSA added to the aqueous substrate.Separate radiotracer measurement, using35S-labeled SDocS monolayer, which is insoluble by itself, revealed that SDocS is solubilized into the bulk solution when BSA is added to the aqueous substrate.  相似文献   

15.
利用层层自组装方法制备了聚烯丙基铵盐酸盐(PAH)/聚苯乙烯磺酸钠(PSS)多层膜. 通过吸附或共价偶联, 在多层膜表面修饰了聚乙二醇(PEG)、牛血清白蛋白(BSA)或肝素, 通过石英晶体微天平(QCM)、椭圆偏振光谱和原子力显微镜(AFM)研究了多层膜的表面形貌及修饰方法对各种蛋白的吸附性能. 经修饰后的多层膜较基底膜的厚度均有所增大; 最外层经修饰后的多层膜吸附的BSA、纤维蛋白原及血浆蛋白的量较未修饰多层膜均有所减少. 采用SEM观察了血小板在多层膜上的黏附情况和形态变化, 计算了血小板的黏附率. 比较各多层膜的凝血酶原时间(PT), 发现修饰后的多层膜的凝血酶原时间均有所延长, 但各组间无显著性差异.  相似文献   

16.
We studied the enzymatic action of Savinase on bovine serum albumin (BSA) organized in a monolayer spread at the air/water interface or adsorbed at the mica surface. We carried out two types of experiments. In the first one we followed the degradation of the protein monolayer by measuring the surface pressure and surface area decrease versus time. In the second approach we applied AFM imaging of the supported BSA monolayers adsorbed on mica solid supports and extracted information for the enzyme action by analyzing the obtained images of the surface topography in the course of enzyme action. In both cases we obtained an estimate for the turnover number (TON) of the enzyme reaction.  相似文献   

17.
This study presents the use of flow cytometry as a high-throughput quantifiable technique to study multicomponent adsorption interactions between proteins and surfaces. Flow cytometry offers the advantage of high-throughput analysis of multiple parameters on a very small sampling scale. This enables flow cytometry to distinguish between individual adsorbent particles and adsorbate components within a suspension. As a proof of concept study, the adsorption of three proteins--bovine serum albumin (BSA), bovine immunoglobulin gamma (IgG) and fibrinogen--onto five surface-modified organosilica microsphere surfaces was used as a model multicomponent system for analysis. By uniquely labeling each protein and solid support type with spectrally distinguishable fluorescent dyes, the adsorption process could be "multiplexed" allowing for simultaneous screening of multiple adsorbate (protein) and adsorbent (particle surface) interactions. Protein adsorption experiments quantified by flow cytometry were found to be comparable to single-component adsorption studies by solution depletion. Quantitative distribution of the simultaneous competitive adsorption of BSA and IgG indicated that, at concentrations below surface saturation, both proteins adsorbed onto the surface. However, at concentrations greater than surface saturation, BSA preferentially adsorbed. Multiplexed particle suspensions of optically encoded particles were modified to produce a positively and negatively charged surface, a grafted 3400 MW poly(ethylene glycol) layer, or a physisorbed BSA or IgG layer. It was observed that adsorption was rapid and irreversible on all of the surfaces, and preadsorbed protein layers were the most effective in preventing further protein adsorption.  相似文献   

18.
The interaction between bovine serum albumin (BSA) and the anionic 1.2-dipalmitoyl-snglycero- 3-(phospho-rac-(1-glycerol)) (sodium salt) (DPPG) phospholipid at different subphase pH values was investigated at air-water interface through surface pressure measurements and atomic force microscopy (AFM) observation. By analyzing surface pressure-mean molecular area (π-A) isotherms, the limiting molecular area in the closed packing state-the concentration of BSA (Alim-[BSA]) curves, the compressibility coefficient-surface pressure (CS-1-π) curves and the difference value of mean molecular area-the concentration of BSA (ΔA-[BSA]) curves, we obtained that the mean molecular area of DPPG monolayer became much larger when the concentration of BSA in the subphase increased at pH=3 and 5. But the isotherms had no significant change at different amount of BSA at pH=10. In addition, the amount of BSA molecules adsorbed onto the lipid monolayer reached a threshold value when [BSA]>5×10-8 mol/L for all pHs. From the surface pressure-time (π-t) data, we obtained that desorption and adsorption processes occurred at pH=3, however, there was only desorption process occurring at pH=5 and 10. These results showed that the interaction mechanism between DPPG and BSA molecules was affected by the pH of subphase. BSA molecules were adsorbed onto the DPPG monolayers mainly through the hydrophobic interaction at pH=3 and 5, and the strength of hydrophobic interaction at pH=3 was stronger than the case of pH=5. At pH=10, a weaker hydrophobic interaction and a stronger electrostatic repulsion existed between DPPG and BSA molecules. AFM images revealed that the pH of subphase and [BSA] could affect the morphology features of the monolayers, which was consistent with these curves. The study provides an important experimental basis and theoretical support to understand the interaction between lipid and BSA at the air-water interface.  相似文献   

19.
To study the interaction between liposomes and proteins, intact liposomes were immobilized on a metal planar support by chemical binding and/or bioaffinity using a quartz crystal microbalance (QCM). A large decrease in the resonance frequency of quartz crystal was observed when the QCM, modified by a self-assembled monolayer (SAM) of carboxythiol, was added to liposome solutions. The stable chemical immobilization of intact liposomes onto SAM was judged according to the degree with which adsorbed mass depended on the prepared size of liposomes, as well as on the activation time of SAMs when amino-coupling was introduced, where the liposome coverage of electrodes was 69+/-8% in optimal conditions. When avidin-biotin binding was used on amino-coupling liposome layers, liposome immobilization finally reached 168% coverage of the electrode surface. Denatured protein was also successfully detected according to the change in the frequency of the liposome-immobilized QCM. The adsorbed mass of denatured carbonic anhydrase from bovine onto immobilized liposomes showed a characteristic peak at a concentration of guanidine hydrochloride that corresponded to a molten globule-like state of the protein, although the mass adsorbed onto deactivated SAM increased monotonously.  相似文献   

20.
The adsorption affinity of bovine serum albumin (BSA) and lysozyme (LSZ) to calcium hydroxyapatite (CaHAP) was evaluated by desorption and two step adsorption methods. These experiments were carried out at 15°C in a 1×10−4 mol dm−3 KCl solution of pH 6.0. BSA molecules were scarcely desorbed, exhibiting an irreversible adsorption of BSA, though LSZ slightly desorbed. This result supports our previous findings that LSZ adsorbs weakly onto phosphate ions exposed on ac or bc faces of CaHAP while BSA adsorbs strongly onto positively charged sites on ac or bc faces of CaHAP. The amount of adsorbed LSZ was markedly increased by the pre-adsorption of BSA, where LSZ was adsorbed onto BSA-covered CaHAP. On the other hand, the amount of adsorbed BSA was not changed by the pre-adsorption of LSZ. In both pre-adsorption systems it was confirmed by an HPLC method that no protein molecule pre-adsorbed was desorbed after the post-adsorption procedure. Therefore, it was interpreted that the enhancement of adsorption of positively charged LSZ is induced by an electrostatic attractive force through pre-adsorption of negatively charged BSA molecules with a high coverage. However, since the coverage of LSZ onto CaHAP is considerably low, no stimulation of BSA adsorption occurred on the LSZ-covered surface. The formation of double protein adsorbed layers consisting of pre- and post-adsorbed proteins was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号