首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epoxy resin nanocomposites containing organophilic montmorillonite (oM) and polyurethane were prepared by adding oM to interpenetrating polymer networks (IPNs) of epoxy resin and polyurethane (EP/PU). The dispersion degree of oM in EP/PU matrix was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Fourier transform infrared spectrometry (FT-IR) showed that strong interactions existed between oM and EP/PU matrix, and oM had some effect on hydrogen bonding of these EP/PU IPNs nanocomposites. Positron annihilation spectroscopy (PALS) and differential scanning calorimetry (DSC) measurements were used to investigate the effect of oM and PU contents on free volume and glass transition temperature (Tg) of these nanocomposites. The PALS and DSC results clearly showed that the presence of oM led to a decrease in the total fractional free volume, which was consistent with increasing Tg upon addition of oM, ascribed to increasing hydrogen bonding in interfacial regions of oM and EP/PU matrix and enhancing the miscibility between EP phase and PU phase. In addition, with increasing PU content, the total fractional free volume increased, corresponding to decreasing Tg.  相似文献   

2.
A series of interpenetrating polymer networks (IPNs) based on epoxy (EP) resin and polyurethane (PU) prepolymer derived from soybean oil-based polyols with different mass ratios were synthesized. The structure, thermal properties, damping properties, tensile properties, and morphology of soybean oil-based PU/EP IPNs were characterized by Fourier-transform infrared spectroscopy, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), universal test machine, and scanning electron microscopy (SEM). DSC and DMA results show that the glass transition temperature of the soybean oil-based PU/EP IPN decreases with the increase of PU prepolymer contents. Soybean oil-based PU/EP IPNs have better damping properties than that of the pure epoxy resin. The tensile strength and modulus of PU/EP IPNs decrease, while elongation at break increases with the increase of PU prepolymer contents. SEM observations reveal that phase separation appears in PU/EP IPNs with higher PU prepolymer contents.  相似文献   

3.
Organoclay-modified hydroxylterminated polysulfone (PSF)/epoxy interpenetrating network nanocomposites (oM-PSF/EP nanocomposites) were prepared by adding organophilic montmorillonite (oMMT) to interpenetrating polymer networks (IPNs) of polysulfone and epoxy resin (PSF/EP) using diaminodiphenylmethane (DDM) as curing agent.The mechanical properties like tensile strength,tensile modulus,flexural strength,flexural modulus and impact properties of the nanocomposites were studied as per ASTM standards.Differ...  相似文献   

4.
Three-component IPNs were synthesized from polyurethane/poly (methyl acrylate aminoethyl methacrylate)/epoxy resin [PU/P(MADMA)/EP] by simultaneous synthesis interpenetrating polymer networks method(SINs) and sequential synthesis interpenetrating polymer networks method (STPNs). Comparing the effect of the two synthesis methods on the morphology and mechanical properties of three-component IPNs, it was found that the compatibility of three-component IPNs depends on the component ratios and interpenetrating formation , the different synthesis methods make the entanglement and interpenetrating between networks changed. The tensile strength of SIPNs is bigger than that of SINs, while the elongation at break of SINs is bigger than that of SIPNs. It is feasible to use stepwise staining method to observe the morphology change.  相似文献   

5.

Soybean oil-based polyurethane (PU)/epoxy (EP) interpenetrating polymer network (IPN) nanocomposites were prepared with natural attapulgite (N-ATT) and acid-treated attapulgite (A-ATT). The structure, glass transition, damping properties, thermal stability, mechanical properties and morphology of PU/EP IPN/ATT nanocomposites were characterized by X-ray diffraction (XRD), dynamic mechanical analysis (DMA), thermogravimetric analyzer, universal test machine and scanning electronic microscope (SEM). XRD showed that interaction with PU did not change the crystal structures of ATT. DMA results revealed the addition of ATT improved the glass transition temperature of the soybean oil-based PU/EP IPN, especially for A-ATT. However, the incorporation of ATT slightly decreased the damping properties of the soybean oil-based PU/EP IPN. Tensile tests confirmed that A-ATT had a significant reinforcement effect on the soybean oil-based PU/EP IPN. The tensile strength of the soybean oil-based PU/EP IPN increased by 56% with the addition of 4 mass% A-ATT. SEM demonstrated the relatively uniform dispersion of both N-ATT and A-ATT in the soybean oil-based PU/EP IPN matrix.

  相似文献   

6.
聚氨酯/环氧树脂IPN复合抛光材料的制备及性能研究   总被引:1,自引:0,他引:1  
本研究采用聚氨酯与环氧树脂(PU/EP)作为胶黏剂形成互穿网络(IPN),以无机磨料和稀土抛光剂为分散相,通过一定的成型工艺制备成复合抛光材料。通过固化前后的红外光谱,分析了PU、EP两者之间的反应;热重分析表明PU/EP IPN复合抛光材料的耐热性能比纯的PU和EP有显著提高;体视显微镜照片显示该复合抛光材料具有微孔结构;力学及应用性能研究显示当胶黏剂含量为25%时性能最佳;且在PU/EP=2时,抛光后的玻璃透光率保持原有的97%,且耐磨性得到大幅度提高。  相似文献   

7.
聚氨酯/蒙脱土纳米复合材料的制备与性能研究   总被引:23,自引:0,他引:23  
纳米复合材料由于其纳米尺寸效应 ,表面效应以及纳米粒子与基体界面间强的相互作用 ,具有优于相同组分常规复合材料的力学 ,热学等性能 ,引起了人们的广泛关注 .用纳米材料改性聚合物 ,制备纳米复合材料是获得高性能高分子复合材料的重要方法 ,采用较多的是插层复合法 ,可分为两类 ,一是单体预先插层于层状结构填料的晶片层间 ,然后聚合 ;二是聚合物溶液或熔体直接插层于层状结构填料的晶片层间 .聚氨酯 (PU)是由多异氰酸酯与多元醇通过加聚反应而形成的高聚物 ,其重复结构单元是氨基甲酸酯链段( R2 OCONHR1NHCOO) .PU弹性体具有耐磨…  相似文献   

8.
Polyurethane (PU) has been prepared by using polyether polyol (jagropol oil) and 1,6- hexamethylene diisocyanate (HMDI) as a cross-linker. The organically modified montmorillonite clay (MMT) is well-dispersed into urethane matrix by an in situ polymerization method. A series of PU/MMT nanocomposites have been prepared by incorporating varying amounts of nanoclay viz., 1, 3, 5 and 6 wt %. Thermogravimetric analysis (TGA) of the PU/MMT nanocomposites has been performed in order to establish the thermal stability and their mode of thermal degradation. The TGA thermograms exhibited the fact that nanocomposites have a higher decomposition temperature in comparison with the pristine PU. It was found that the thermal degradation of all PU nanocomposites takes place in three steps. All the nanocomposites were stable up to 205°C. Degradation kinetic parameters of the composites have been calculated for each step of the thermal degradation processes using three mathematical models namely, Horowitz–Metzger, Coats–Redfern and Broido's methods.  相似文献   

9.
Polyethylene/montmorillonite clay nanocomposites were obtained via direct melt intercalation. The clay was organically modified with four different types of quaternary ammonium salts. The objective of this work is to study the use of montmorillonite clay in the production of nanocomposites by means on rheological, mechanical and crystallization properties of nanocomposites and to compare to the properties of the matrix and PE/unmodified clay nanocomposites. In general, the tensile test showed that the yield strength and modulus of the nanocomposites are close to the pure PE. Apparently, the mixture with Dodigen salt seems to be more stable than the pure PE and PE/unmodified clay.  相似文献   

10.
聚氨酯/环氧树脂互穿网络(PU/EPIPN)硬泡中异氰酸根的消耗速度较纯PU硬泡高,是由于环氧树脂的固化荆同时也是异氰酸根反应的催化荆。而PU/EP IPN硬泡中环氧基的反应速度和反应程度均较纯EP网络低,归因于互穿网络对基团扩散的阻碍。在互穿网络硬泡形成过程中,存在环氧开环中所新产生的羟基与异氰酸根的反应、大分子多元醇中羟基与环氧基的反应以及异氰酸根与环氧基形成嗯唑烷酮的反应三种形成网络间的化学键的途径。同时由于PU/EPIPN硬泡高度的交联,使得IPN硬泡中两个网络具有良好的相容性。动态力学性能表明所有IPN样品都只有一个玻璃化温度。透射电镜表明IPN样品无明显的相界面。  相似文献   

11.
The properties of polyurethane (PU) nanocomposites with three different organoclays were compared in terms of their thermal stabilities, mechanical properties, morphologies, and gas permeabilities. Hexadecylamine–montmorillonite, dodecyltrimethyl ammonium–montmorillonite, and Cloisite 25A were used as organoclays for making PU hybrid films. The properties were examined as a function of the organoclay content in a matrix polymer. Transmission electron microscopy photographs showed that most clay layers were dispersed homogeneously into the matrix polymer on the nanoscale, although some particles of clay were agglomerated. Moreover, the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PU hybrid films, whereas gas permeability was reduced. Even polymers with low organoclay contents (3–4 wt %) showed much higher strength and modulus values than pure PU. Gas permeability was reduced linearly with an increasing amount of organoclay in the PU matrix. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 670–677, 2002; DOI 10.1002/polb.10124  相似文献   

12.
PU/MOMMT纳米复合材料的制备与研究   总被引:3,自引:0,他引:3  
纳米复合材料由于其纳米尺寸效应,表面效应以及纳米粒子与基体界面间强的相互作用,具有优于相同组分常规复合材料的力学、热学等性能,引起了人们的广泛关注。用纳米材料改性聚合物,制备纳米复合材料是获得高性能高分子复合材料的重要方法。1998年以来,Pinnavaia等首先制备了聚氨酯,蒙脱土(PU/MMT)纳米复合材料,研究了有机蒙脱土在聚醚中的分散性。其后Chen等将聚羟基己内酯/蒙脱土(PCL/MMT)纳米复合材料加入到PCL和二苯基甲烷-4,4'-二异氰酸酯(MDI)合成的预聚体与1,4-丁二醇扩链反应后的溶液中,制备了PU/MMT纳米复合材料。少量PCL/MMT的引入可使复合材料的综合性能大幅提高。  相似文献   

13.
聚氨酯环氧树脂乳液互穿聚合物网络结构与性能研究   总被引:2,自引:0,他引:2  
分别以聚四氢呋喃(PTMG)和聚己二酸丁二酯(PBA)为聚氨酯(PU)软段,制备了高环氧树脂(EP)含量的PU/EP乳液互穿聚合物网络(LIPN).通过红外光谱,动态力学分析,原子力显微镜等研究了不同类型软段对LIPN结构与性能的影响.结果表明,LIPN结构已经形成,PU与EP间无化学键结合.以PBA为PU软段制备的LIPN中PU与EP相容性更好,分相程度相对低,互穿程度高,导致EP对PBA软段运动的限制作用较强,EP含量的变化对LIPN的玻璃化转变温度影响更大.研究样品的力学性能和溶剂溶胀性能发现,PBA为软段制备的LIPN均优于以PTMG为软段制备的LIPN,水溶胀率等有大幅减小,表现出明显的互穿协同效应.  相似文献   

14.
Mechanical properties and tribological behavior of epoxy resin (EP) and EP nanocomposites containing different shape nanofillers, such as spherical silica (SiO2), layered organo‐modified montmorillonite (oMMT) and oMMT‐SiO2 composites, were investigated. The SiO2‐oMMT composites were prepared by in situ deposition method and coupling agent modification, and transmission electron microscopy (TEM) analysis shows that spherical SiO2 is self‐assembled on the surface of oMMT, which forms a novel layered‐spherical nanostructure. The mechanical properties test results show that oMMT obviously improves the strength of EP and SiO2 enhances its toughness, but oMMT‐SiO2 exhibits a synergistic effect on toughening and reinforcing EP simultaneously. A pin‐on‐disc rig was used to test friction and wear loss of pure EP and EP nanocomposites. The tribological test results prove that these nanofillers with different shapes play different roles for improving the wear resistance of EP nanocomposites. Morphologies of the worn surfaces were studied further by scanning electron microscopy (SEM) observations, and it was clarified that the EP and EP nanocomposites undergo similar wear mechanisms. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Flexible polyurethane (PU) nanocomposite foams were synthesized using organically modified montmorillonite clay (Cloisite 30B). The dispersion of organoclay was considered both in the isocyanate and polyol matrixes. Silicate layers of organoclay can be exfoliated in PU matrix by use of two steps mixing process. The presence of clay increased the cell density and reduced the cell size compared to the conventional PU foam. Clay dispersion was investigated by X-ray diffraction (XRD). The morphology and properties of PU nanocomposite foams were also studied. Generally, mechanical properties by addition of clay were improved. Foams in which clay was firstly dispersed in the isocyanate, showed better dispersion due to affinity of OH group on the clay surface to react with NCO groups. Better properties have been achieved with these nanofoams.  相似文献   

16.
A series of conducting interpenetrating polymer networks (IPNs), are prepared by sequential polymerization of castor oil based polyurethane (PU) with poly(methyl methacrylate) (PMMA) and polyaniline doped with camphor sulphonic acid (PAni)CSA. The effect of different amount of PAni (varies from 2.5-12.5%) on the properties of PU/PMMA (50/50) IPNs such as electrical properties like conductivity, dielectric constant and dissipation factor; mechanical properties like tensile strength and percentage elongation at break have been reported. (PAni)CSA filled IPNs shows improved tensile strength than the unfilled IPN system. The thermal stability and surface morphology of unfilled and (PAni)CSA filled PU/PMMA (50/50) IPN sheets were investigated using a thermogravimetric analyzer (TGA) and a scanning electron microscope (SEM). TGA thermograms of (PAni)CSA filled PU/PMMA (50/50) IPNs show a three-step thermal degradation process. SEM micrograms of filled PU/PMMA IPN system shows spherulitic structure at higher concentration of (PAni)CSA.  相似文献   

17.
Linear isocyanate‐terminated poly(urethane‐imide) (PUI) with combination of the advantages of polyurethane and polyimide was directly synthesized by the reaction between polyurethane prepolymer and pyromellitic dianhydride (PMDA). Then octaaminophenyl polyhedral oligomeric silsesquioxane (OapPOSS) and PUI were incorporated into the epoxy resin (EP) to prepare a series of EP/PUI/POSS organic–inorganic nanocomposites for the purpose of simultaneously improving the heat resistance and toughness of the epoxy resin. Their thermal degradation behavior, dynamic mechanical properties, and morphology were studied with thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA), and transmission electron microscope (TEM). The results showed that the thermal stability and mechanical modulus was greatly improved with the addition of PUI and POSS. Moreover, the EP/PUI/POSS nanocomposites had lower glass transition temperatures. The TEM results revealed that POSS molecules could self assemble into strip domain which could switch to uniform dispersion with increasing the content of POSS. All the results could be ascribed to synergistic effect of PUI and POSS on the epoxy resin matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Summary: In this study, chitosan nanocomposite films were prepared using a solvent-casting method by incorporation of an organically modified montmorillonite (Cloisite 10A). The effect of filler concentration on the water vapor permeability, oxygen permeability, mechanical and thermal properties of the composite films was evaluated. The structure of nanocomposites and the state of intercalation of the clay were characterized by XRD. The water vapor permeability of pure chitosan films was measured as a function of relative humidity (RH). It was found that the permeability value increased with an increase in RH. The water vapor and gas permeability values of the composite films decreased significantly with increasing filler concentration. Permeation data was fitted to various phenomenological models predicting the permeability of polymer systems filled with nanoclays as a function of clay concentration and aspect ratio of nanoplatelets. According to the XRD results, an increase in basal spacing was obtained with respect to pure clay for chitosan/clay nanocomposites. This demonstrated the formation of intercalated structure of clay in the polymer matrix. Tensile strength and elongation at break of the composites increased significantly with the addition of clay, however the thermal and color properties of the films were not much affected by the intercalation of clay into polymer matrix.  相似文献   

19.
聚氨酯弹性体/蒙脱土纳米复合材料的合成、结构与性能   总被引:73,自引:0,他引:73  
采用插层聚合法合成了综合力学性能优异的聚氨酯 蒙脱土纳米复合材料 .X 射线衍射结果表明 ,蒙脱土以平均层间距不小于 4 5nm的宽分布分散在聚氨酯基体中 .加入 7 5wt%左右的蒙脱土 ,复合材料的拉伸强度高于纯PU基体的 2倍 ,断裂伸长率则高于纯PU基体的 4倍以上 .TGA分析表明 ,聚氨酯 蒙脱土纳米复合材料的热稳定性略有提高  相似文献   

20.
采用一步法(Simultaneously)合成了双组分的聚丙烯酸酯/环氧树脂互穿网络聚合物(IPNs).选择预溶胀方法制备了聚丙烯酸酯和环氧树脂两种组分网络.测定了各种组分比的IPN和不同溶胀度下的组分网络的动态力学性能,从橡胶态弹性理论出发讨论了IPN和预溶胀网络之间在橡胶态弹性模量上的关系,并据此指出互穿缠结增加了网络的有效“交联密度”,因此,它对IPN的橡胶态弹性模量有较大的贡献.密度测量的结果也提供了另一方面的证据  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号