首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents thermal studies of nanocomposites based on the flexible polyurethane (PU) matrix and filled using montmorillonite organically modified with organophosphorus flame retardant compound. Flexible PU nanocomposite foams were prepared in the reaction carried out between reactive alcoholic hydroxyl and isocyanate groups with the ratio of NCO to OH groups equal to 1.05. The amount of an organoclay ranging from 3 to 9 vol% was added to the polyol component of the resin before mixing with isocyanate. The apparent density of PU foams was ranging from 0.066 to 0.077 g cm?1. Thermal properties of the flexible PU nanocomposite foams were investigated by thermogravimetry and dynamical mechanical analysis. Glass transition temperatures (T g) were defined as maximum peak on tanδ curve. Thermal decomposition was observed at 310–320 °C (calculated from the onset of TG curve). Tensile strength of the PU foams was determined using mechanical test. The microstructure of the nanoparticles and the composites was investigated by X-ray diffraction. Finally, it was confirmed that the thermal and mechanical properties of flexible PU nanocomposite depend on the amount of nanoclay.  相似文献   

2.
在恒定剪切速率下,利用旋转流变仪研究端羧基聚丁二烯/蒙脱土纳米复合凝胶的流变行为,同时利用X-射线衍射(XRD)和透射电镜(TEM)等表征手段研究其微观结构.研究结果表明,该体系在26~116℃的升-降温过程中,观察到不可逆转变和可逆转变两种流变行为,其中不可逆转变流变行为归因于蒙脱土片层的剥离过程,而可逆转变流变行为...  相似文献   

3.
The properties of polyurethane (PU) nanocomposites with three different organoclays were compared in terms of their thermal stabilities, mechanical properties, morphologies, and gas permeabilities. Hexadecylamine–montmorillonite, dodecyltrimethyl ammonium–montmorillonite, and Cloisite 25A were used as organoclays for making PU hybrid films. The properties were examined as a function of the organoclay content in a matrix polymer. Transmission electron microscopy photographs showed that most clay layers were dispersed homogeneously into the matrix polymer on the nanoscale, although some particles of clay were agglomerated. Moreover, the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PU hybrid films, whereas gas permeability was reduced. Even polymers with low organoclay contents (3–4 wt %) showed much higher strength and modulus values than pure PU. Gas permeability was reduced linearly with an increasing amount of organoclay in the PU matrix. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 670–677, 2002; DOI 10.1002/polb.10124  相似文献   

4.
A multi-scale study of the dispersion state of PP/organoclay and PP-g-MA/organoclay composite was performed. Microscopic investigation, WAXS diffractograms and rheological analysis were used to characterize the dispersion of organoclay in PP and PP-g-MA matrices during melt blending in different morphological scales: from nano- to bulk-scale. The results show a system of aggregating intercalated clay particles which disperse with increasing mixing time with a strain-controlled process for PP-g-MA/organoclay nanocomposite, whilst PP/organoclay samples only form microcomposites.  相似文献   

5.
New nanocomposite materials based on polyurethane intercalated into organoclay layers have been synthesized via in situ polymerization. The syntheses of polyurethane–organoclay hybrid films were carried out by swelling the organoclay [12‐aminododecanoic acid montmorillonite] into different kinds of diols followed by addition of diisocyanate then casting in a film. The homogeneous dispersion of MMT in the polymer matrix is evidenced by scanning electron microscope and x‐ray diffraction, which showed the disappearance of the peak characteristic to d001 spacing. It was found that the presence of organoclay has improved the thermal, solvent resistance and mechanical properties. Also, the tensile strength is increased with increasing the organoclay contents to 20% by the ratio 182% related to the PU with 0% organoclay. On the contrary, the elongation has decreased with increasing the organoclay contents. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The fabrication of syndiotactic polystyrene (sPS)/organoclay nanocomposite was conducted via a stepwise mixing process with poly(styrene‐co‐vinyloxazolin) (OPS), that is, melt intercalation of OPS into organoclay followed by blending with sPS. The microstructure of nanocomposite mainly depended on the arrangement type of the organic modifier in clay gallery. When organoclays that have a lateral bilayer arrangement were used, an exfoliated structure was obtained, whereas an intercalated structure was obtained when organoclay with a paraffinic monolayer arrangement were used. The thermal and mechanical properties of sPS nanocomposites were investigated in relation to their microstructures. From the thermograms of nonisothermal crystallization and melting, nanocomposites exhibited an enhanced overall crystallization rate but had less reduced crystallinity than a matrix polymer. Clay layers dispersed in a matrix polymer may serve as a nucleating agent and hinder the crystal growth of polymer chains. As a comparison of the two nanocomposites with different microstructures, because of the high degree of dispersion of its clay layer the exfoliated nanocomposite exhibited a faster crystallization rate and a lower degree of crystallinity than the intercalated one. Nanocomposites exhibited higher mechanical properties, such as strength and stiffness, than the matrix polymer as observed in the dynamic mechanical analysis and tensile tests. Exfoliated nanocomposites showed more enhanced mechanical properties than intercalated ones because of the uniformly dispersed clay layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1685–1693, 2004  相似文献   

7.
The surface modification of montmorillonite clay was carried out through ion‐ exchange reaction using p‐phenylenediamine as a modifier. This modified clay was employed to prepare aromatic polyamide/organoclay nanocomposite materials. The dispersion behavior of clay was examined in the polyamide matrix. Polyamide chains were synthesized from 4‐aminophenyl sulfone and isophthaloyl chloride (IPC) in dimethylacetamide. These amide chains were suitably end‐capped with carbonyl chloride end groups to interact chemically with modified montmorillonite clay. The resulting nanocomposite films containing 2–20 wt% of organoclay were characterized by TEM, X‐ray diffraction (XRD), thin‐film tensile testing; thermogravimetric analysis (TGA), differential scanning calorimetric (DSC) and water absorption measurements. Mechanical testing revealed that modulus and strength improved up to 6 wt% organoclay loading while elongation and toughness of nanocomposites decreased with the addition of clay content in the matrix. Thermal decomposition temperatures of the nanocomposites were in the range 225–450 °C. These nanocomposites expressed increase in the glass‐transition temperature values relative to pure polyamide describing interfacial interactions among the phases. The percent water uptake of these composites reduced upon the addition of modified layered silicate depicting improved barrier properties. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Polyurethane (PU) foams are indisputably daily essential materials found in many applications, notably for comfort (for example, matrasses) or energy saving (for example, thermal insulation). Today, greener routes for their production are intensively searched for to avoid the use of toxic isocyanates. An easily scalable process for the simple construction of self‐blown isocyanate‐free PU foams by exploiting the organocatalyzed chemo‐ and regioselective additions of amines and thiols to easily accessible cyclic carbonates is described. These reactions are first validated on model compounds and rationalized by DFT calculations. Various foams are then prepared and characterized in terms of morphology and mechanical properties, and the scope of the process is illustrated by modulating the composition of the reactive formulation. With impressive diversity and accessibility of the main components of the formulations, this new robust and solvent‐free process could open avenues for construction of more sustainable PU foams, and offers the first realistic alternative to the traditional isocyanate route.  相似文献   

9.
In this work polyurethane (PU) matrix nanocomposite, obtained using an organically modified montmorillonite (OMM), was synthesized and characterized. An amount of organoclay ranging from 2% up to 6% by volume was added to the polyol component of the resin before mixing with isocyanate. The microstructure of the composites was investigated by X-ray diffraction. The glass transition temperature (Tg) of PU nanocomposites, measured using differential scanning calorimeter, increases with increasing the volume fraction of OMM. On the other hand, the heat capacity increment, ΔCp, decreases from that the unfilled PU to that of the sample with 5.7% vol of OMM. Therefore a corresponding increase of the rigid amorphous fraction of PU nanocomposites with nanoclay was observed. Finally, the definition of molecular cooperativity was discussed for this system and the characteristic length of the cooperative region was determined, using the approach proposed by Donth.  相似文献   

10.
Rigid polyurethane (PU) foams having saccharide and castor oil structures in the molecular chain were prepared by reaction between reactive alcoholic hydroxyl group and isocyanate. The apparent density of PU foams was in a range from 0.05 to 0.15 g cm?3. Thermal properties of the above polyurethane foams were studied by differential scanning calorimetry, thermogravimetry and thermal conductivity measurement. Glass transitions were observed in two steps. The low-temperature side glass transition was observed at around 220 K, regardless of castor oil content. This transition is attributed to the molecular motion of alkyl chain groups of castor oil. The high-temperature side glass transition observed in the temperature range from 350 to 390 K depends on the amount of molasses polyol content. The high-temperature side glass transition is attributed to the molecular motion of saccharides, such as sucrose, glucose, fructose as well as isocyanate phenyl rings, which act as rigid components. Thermal decomposition was observed in two steps at 570 and 620–670 K. Thermal conductivity was observed at around 0.032 J sec?1 m?1 K?1. Compression strength and modulus of PU foams were obtained by mechanical test. It was confirmed that the thermal and mechanical properties of PU foams could be controlled by changing the mixing ratio of castor oil and molasses for suitable practical applications.  相似文献   

11.
In this study, a series of polymer–clay nanocomposite materials, consisting of organosoluble poly(amide-imide) (PAI) matrix and dispersed nanolayers of inorganic montmorillonite clay, were successfully prepared by solution dispersion technique. At first, the reactive organoclay was prepared by using protonated l-isoleucine amino acid as a swelling agent for silicate layers of Cloisite Na+. Then, organosoluble PAI containing isoleucine amino acid was synthesized through step-growth polymerization reaction of N,N′-(pyromellitoyl)-bis-isoleucine diacid and 2-(3,5-diaminophenyl)-benzimidazole under green condition using molten tetrabutylammonium bromide. This polymer was end-capped with amine end groups near the completion of the reaction to interact chemically with acidic group of organoclay. Finally, PAI/organoclay nanocomposite films containing 2%, 5%, 10%, and 15% of organoclay were prepared via solution intercalation method through blending of organoclay with the PAI solution. Dispersion of the modified clay in the PAI matrix resulted in a nanostructured material containing intercalated polymer between the silicate layers. Structures of exfoliation were confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. Thermogravimetric analysis data indicated that the addition of organoclay into the PAI matrix increased the thermal decomposition temperatures of the obtained nanocomposites compared to the pure PAI.  相似文献   

12.
In this study, polymer nanocomposites based on poly(lactic acid) (PLA) and organically modified layered silicates (organoclay) were prepared by melt mixing in an internal mixer. The exfoliation of organoclay could be attributed to the interaction between the organoclay and PLA molecules and shearing force during mixing. The exfoliated organoclay layers acted as nucleating agents at low content and as the organoclay content increased they became physical hindrance to the chain mobility of PLA. The thermal dynamic mechanical moduli of nanocomposites were also improved by the exfoliation of organoclay; however, the improvement was reduced at high organoclay content. The dynamic rheological studies show that the nanocomposites have higher viscosity and more pronounced elastic properties than pure PLA. Both storage and loss moduli increased with silicate loading at all frequencies and showed nonterminal behavior at low frequencies. The nanocomposites and PLA were then foamed by using the mixture of CO2 and N2 as blowing agent in a batch foaming process. Compared with PLA foam, the nanocomposite foams exhibited reduced cell size and increased cell density at very low organoclay content. With the increase of organoclay content, the cell size was decreased and both cell density and foam density were increased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 689–698, 2005  相似文献   

13.
In this study, different modified polyethylenes with different molar masses and different modification rates were examined as compatibilizers to prepare high density polyethylene/organoclay nanocomposites. Nanocomposites having 5 wt % organo-modified clay and 20 wt % interfacial agent were prepared by melt blending. The effect of compatibilizer molar mass and polarity was investigated on the clay dispersion and on the gas barrier properties. It was observed that the amount of large and dense fillers aggregates was considerably reduced by introduction of an interfacial agent. The nanocomposite final morphology was governed by a diffusion/shear mechanism. A high degree of clay delamination was obtained with the high molar mass compatibilizers, whereas highly swollen clay aggregates resulted from the incorporation of the low molar mass interfacial agents. In the investigated nanocomposites series, the barrier properties could not be directly related to the clay dispersion state but resulted also from the matrix/clay interfacial interactions. A gas transport mechanism based on these both parameters was proposed to explain the barrier properties evolution in these low polar nanocomposites series. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2593–2604, 2008  相似文献   

14.
The effect of polyol molecular weight and functionality on nanodispersion of clay in PU/clay nanocomposites and the investigation of their thermal and combustion properties are reported and discussed. Lamellar elastomer polyurethane nanocomposites were synthesized using polyols with different molecular weight and functionality and according to these parameters they show several degrees of dispersion which affect their thermal and combustion behaviour. A barrier effect of clay layer is shown in TGA experiments by a delay of thermal degradation products release in nanocomposite materials compared to the virgin polymer; this barrier effect also leads to formation of char during combustion which lowers the peak of rate of heat release in cone calorimeter tests and eliminates fire-induced dripping of the nanocomposite sample during UL 94 test. However, in order to achieve non-burning behaviour nanocomposite technology must be combined with conventional flame retardant technology.  相似文献   

15.
Polymer gels as soft biomaterials have found diverse applications in biomedical field, e.g. in management and care of wound as wound dressing.The recent researches on nanocomposite materials have shown that some properties of polymers and gels significantly improve by adding organoclay into polymeric matrix. In this work, in order to obtain wound dressing with better properties, nanocomposite hydrogel wound dressing was prepared using combination of polyvinyl alcohol hydogel and organoclay, i.e. Na-montmorillonite, via the freezing-thawing method. The effect of organoclay quantity on the structural, swelling, physical and mechanical properties of nanocomposite hydrogel wound dressing was investigated. The results showed that the nanocomposite hydrogels could meet the essential requirements for the reasonable wound dressing with some desirable characteristics such as relatively good swelling, appreciated vapour transmission rate, excellent barrierity against microbe penetration and mechanical properties. The results also indicated that the quantity of the clay added to the nanocomposite hydrogel is the key factor in obtaining such suitable properties required for wound dressing.  相似文献   

16.
Polyurethane (PU) foams are indisputably daily essential materials found in many applications, notably for comfort (for example, matrasses) or energy saving (for example, thermal insulation). Today, greener routes for their production are intensively searched for to avoid the use of toxic isocyanates. An easily scalable process for the simple construction of self-blown isocyanate-free PU foams by exploiting the organocatalyzed chemo- and regioselective additions of amines and thiols to easily accessible cyclic carbonates is described. These reactions are first validated on model compounds and rationalized by DFT calculations. Various foams are then prepared and characterized in terms of morphology and mechanical properties, and the scope of the process is illustrated by modulating the composition of the reactive formulation. With impressive diversity and accessibility of the main components of the formulations, this new robust and solvent-free process could open avenues for construction of more sustainable PU foams, and offers the first realistic alternative to the traditional isocyanate route.  相似文献   

17.
This paper investigates the possibility of improving the mechanical and thermal properties of epoxy and unsaturated polyester toughened epoxy resins through the dispersion of octadecyl ammonium ion-exchanged montmorillonite (organoclay) through exfoliated mechanism. The nanocomposites prepared are characterized for their structural change and studied for their crystallite size, mechanical, thermal and water absorption (hydrophilicity) properties. The mechanical data indicates significant improvement in the flexural and tensile properties over the neat epoxy and UP-epoxy matrix according to the percentage content of organoclay. The thermal behavior too shows noticeable enhancement in glass transition temperature T g and high thermal stability. Hydrophilicity of all the composites decreases irrespective of the concentration of organoclay on the epoxy and UP-epoxy matrices. The homogeneous morphology of epoxy and UP toughened epoxy nanocomposite hybrid systems is ascertained using scanning electron microscope (SEM). X-ray results point out that the cetyl ammonium modified clay filled composites exhibited the exfoliated structure.  相似文献   

18.
Aramid–organoclay nanocomposites were fabricated through solution intercalation technique. Montmorillonite was modified with p-amino benzoic acid in order to have compatibility with the matrix. The effect of clay dispersion and the interaction between clay and polyamide chains on the properties of nanocomposites were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), tensile testing of thin films, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and water uptake measurements. Excessive clay dispersion was achieved even on the addition of high proportions of clay. The structural investigations confirmed the formation of delaminated nanostructures at low clay contents and disordered intercalated morphology at higher clay loadings. The tensile behavior and thermal stability significantly amplified while permeability reduced with increasing dispersibility of organoclay in the polyamide matrix.  相似文献   

19.
Lignin-and molasses-based polyurethane (PU) foams with various lignin/molasses mixing ratios were prepared. The hydroxyl group in molasses and lignin is used as the reaction site and PU foams with various isocyanate (NCO)/the hydroxyl group (OH) ratios were obtained. Thermal properties of PU foams were investigated by differential scanning calorimetry (DSC), thermogravimetry (TG) and thermal conductivity measurement. Glass transition temperature (T g) was observed depending on NCO/OH ratio in a temperature range from ca. 80 to 120°C and thermal decomposition temperature (T d) from ca. 280 to 295°C. Mixing ratio of molasses and lignin polyol scarcely affected the T g and T d. Thermal conductivity of PU foams was in a range from 0.030 to 0.040 Wm−1 K−1 depending on mixing ratio of lignin and molasses.  相似文献   

20.
剥离型硅橡胶/黏土纳米复合材料研究   总被引:10,自引:0,他引:10  
利用层状硅酸盐制备有机 无机纳米复合材料是当前人们研究的热点[1,2 ] ,这类材料具有较常规聚合物 无机填料复合材料无法比拟的优点 ,可以明显改善高分子材料的物理机械性能、热稳定性、气体阻隔性、阻燃性、导电性、光学性等 .一般来说 ,聚合物 层状硅酸盐 (Polymerlayeredsilicate ,PLS)纳米复合材料可分为插层型和剥离型两种类型 .插层型纳米复合材料即聚合物插入到硅酸盐层中 ,硅酸盐在近程仍保持原有的有序晶体结构 ,在远程则是无序的 .对弹性体而言 ,硅酸盐含量在插层型杂化材料中的含量比较高 ,力学性能…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号