首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 656 毫秒
1.
氢能是21世纪主要的新能源之一.作为一种新型的清洁能源,氢的廉价制取、安全高效储存与输送及规模应用是当今研究的重点课题,而氢的储存是氢能应用的关键.储氢材料能可逆地大量吸放氢,在氢的储存与输送过程中是一种重要载体.本文综述了目前所采用或正在研究的主要储氢材料与技术,如高压气态储氢、低温液态储氢、金属氢化物储氢、化学氢化物储氢、吸附储氢、金属有机骨架储氢等,比较了各种储氢的优缺点,并指出其相关发展趋势.  相似文献   

2.
储氢研究进展   总被引:30,自引:0,他引:30  
许炜  陶占良  陈军 《化学进展》2006,18(2):200-210
氢能是21世纪主要的新能源之一。作为一种新型的清洁能源,氢的廉价制取、安全高效储存与输送及规模应用是当今研究的重点课题,而氢的储存是氢能应用的关键。储氢材料能可逆地大量吸放氢,在氢的储存与输送过程中是一种重要载体。本文综述了目前所采用或正在研究的主要储氢材料与技术,如高压气态储氢、低温液态储氢、金属氢化物储氢、化学氢化物储氢、吸附储氢、金属有机骨架储氢等,比较了各种储氢的优缺点,并指出其相关发展趋势。  相似文献   

3.
陶占良  陈军 《化学进展》2009,21(9):1945-1953
氢能是一种新型的清洁能源,有望替代碳经济,而氢的储存是氢能应用的关键。近年来,研究集中在具有储氢容量高和可逆性好等优点的固态储氢材料上。许多新型储氢材料不断出现,其中以MAlH4(M=Li, Na)为代表的金属复合氢化物体系被认为是最有前景的储氢材料之一。本文综述了MAlH4(M=Li, Na)作为可逆储氢材料的研究现状,主要从吸放氢反应、储氢性能、反应机理、理论计算和存在的问题等方面进行了讨论,并指出其相关发展趋势。  相似文献   

4.
顾婷婷  顾坚  张喻  任华 《化学进展》2020,32(5):665-686
氢气储存仍是制约氢经济推行的关键问题,开发一种高效、安全的储氢技术仍面临着巨大挑战。近年来,利用固态氢化物的化学吸附储氢技术由于可靠、结构紧密和高储氢容量的特点,被视为最有潜力的储氢手段之一。在众多固态氢化物储氢材料中,金属硼氢化物由于其极高的重量和体积储氢密度而备受关注。然而,金属硼氢化物热力学稳定,动力学缓慢,导致其吸/放氢温度高、速率慢、可逆性及循环稳定性差。本文从替代、复合、掺杂、纳米结构限域及相应的反应机理等角度总结了金属硼氢化物储氢材料的最新改性研究和应用,并提出了其中存在的问题和相应对策,同时指出了未来的研究方向。  相似文献   

5.
氢能作为一种理想的二次能源受到了国内外科研工作者的广泛关注,研制可以在室温和较低压力下方便、安全、高效地储存氢能的材料是氢能发展的瓶颈.到目前为止,固态储氢材料以能量密度高及安全性好等优势被认为极具应用前景,其中以轻质元素构成的氢化物(包括硼氢化物/铝氢化物(可用通式A(MH4)n表示,其中A是碱金属(Li,Na,K)或碱土金属(Be,Mg,Ca);M是硼或铝;n=1~4)、氨基氢化物(如LiNH2等))、氨硼烷(NH3BH3)、金属有机骨架材料(MOFs)是新型储氢材料研究领域的热点,本文将着重就目前这几类储氢材料的研究当中所涉及到的一些热力学及动力学问题进行总结探讨.  相似文献   

6.
我国金属氢化物化学研究   总被引:5,自引:0,他引:5  
综述了我国金属氢化物化学的发展。我国是从50年代中期开始研究离子型金属氢化物的合成、性能和应用的,发展了一些合成方法,获得了多项中国专利。储氢合金的化学研究是70年代中期开始的。在储氢合金的化学合成、吸放氢热力学与动力学、储氢合金氢化催化和电化学方面都有较深入的研究,特别是储氢电极合金电化学及其在Ni/MH可逆电池中的应用研究,在国家863计划强有力的支持下,某些方面进入了国际先进行列。  相似文献   

7.
纳米限域的储氢材料   总被引:1,自引:0,他引:1  
氢能作为洁净、理想的二次能源,已受到世界各国的广泛关注。然而,氢的储存技术仍然是制约氢能商业化应用的关键技术。利用储氢材料进行储氢被认为是一种安全、高效的固态储氢方式。因此,开发新型高容量的储氢材料与储氢技术成为氢能领域研究的热点之一。纳米限域是将材料填充到纳米孔道里,利用材料和纳米孔道的相互作用促进反应的进行,为化学反应提供一个独特的微环境。近年来,纳米限域逐渐发展成为改善储氢材料热力学和动力学的新方法。本文综述了纳米限域的储氢材料的研究进展,从纳米限域的储氢材料制备、储氢性能、反应机理和存在的问题等方面进行讨论,并指出了纳米限域储氢材料的发展趋势。  相似文献   

8.
TiHx(x=2,3,4)的从头计算研究   总被引:2,自引:0,他引:2  
过渡金属氢化物分子与诸多催化过程密切相关[1].而过渡金属氢化物本身是一种颇有潜力的能源材料,即贮氢材料,如钛系、钒系贮氢材料在工业上已得到了广泛的应用 [2].但对于金属与氢的相互作用的机理研究的报道甚少.  相似文献   

9.
我国金属氢化物化学研究   总被引:6,自引:0,他引:6  
综述了我国金属氢化物化学的发展。我国是从50年代中期开始研究离子型金属氢化物的合成、性能和应用的,发展了一些合成方法,获得了多项中国专利。储氢合金的化学研究是70年代中期开始的。在储氢合金的化学合成、吸放氢热力学与动力学、储氢合金氢化催化和电化学方面都有较深入的研究,特别是储氢电极合金电化学及其在Ni/MH可逆电池中的应用研究,在国家863计划强有力的支持下,某些方面进入了国际先进行列。  相似文献   

10.
刘淑生  孙立贤  徐芬 《化学进展》2008,20(2):280-287
氢能作为未来理想的清洁能源之一,已经成为全球研究的重要领域,而在氢能的应用中最关键的问题是氢气的存储.近年来,人们的研究集中在固态储氢材料上,许多新型储氢材料不断出现,其中由轻元素组成的金属-氮-氢体系拥有储氢容量高、可逆性好等优点,被认为是最有前景的储氢材料之一.目前金属-氮-氢体系已经发展出许多体系,而研究最多的是Li-N-H和Li-Mg-N-H两种体系.本文重点综述了两者作为可逆储氢材料的研究现状,主要从制备方法、储氢性能、反应机理、理论计算和存在的问题等方面进行了讨论,同时指出了金属-氮-氢储氢体系的发展趋势.  相似文献   

11.
贮氢材料研究进展   总被引:12,自引:0,他引:12  
氢作为一种新的能源,受到各国政府和科学家的极大重视,其制备、贮存、输运及应用技术有了迅速的发展。本文综述贮氢材料的种类及其最近研究进展,并对最近发展起来的一些合金贮氢材料和碳质贮氢材料的制备方法作了介绍。  相似文献   

12.
Hydrogen is a promising energy carrier in future energy systems. However, storage of hydrogen is a substantial challenge, especially for applications in vehicles with fuel cells that use proton‐exchange membranes (PEMs). Different methods for hydrogen storage are discussed, including high‐pressure and cryogenic‐liquid storage, adsorptive storage on high‐surface‐area adsorbents, chemical storage in metal hydrides and complex hydrides, and storage in boranes. For the latter chemical solutions, reversible options and hydrolytic release of hydrogen with off‐board regeneration are both possible. Reforming of liquid hydrogen‐containing compounds is also a possible means of hydrogen generation. The advantages and disadvantages of the different systems are compared.  相似文献   

13.
Hui Wu 《Chemphyschem》2008,9(15):2157-2162
Metal hydrides are an important family of materials that can potentially be used for safe, efficient and reversible on‐board hydrogen storage. Light‐weight metal hydrides in particular have attracted intense interest due to their high hydrogen density. However, most of these hydrides have rather slow absorption kinetics, relatively high thermal stability, and/or problems with the reversibility of hydrogen absorption/desorption cycling. This paper discusses a number of different approaches for the improvement of the hydrogen storage properties of these materials, with emphasis on recent research on tuning the ionic mobility in mixed hydrides. This concept opens a promising pathway to accelerate hydrogenation kinetics, reduce the activation energy for hydrogen release, and minimize deleterious possible by‐products often associated with complex hydride systems.  相似文献   

14.
氢能以其资源丰富和环境友好性成为未来最具发展潜力的能源。储氢技术是氢能应用中的关键问题。随着计算材料学的发展,利用密度泛函和量子机制第一性原理研究已知材料储氢性能和寻找潜在的新型优良储氢载体已成为当前研究储氢材料的有效方法。本文综述了近年来金属-碳基储氢材料中的金属修饰碳纳米管、C60材料和过渡金属-乙烯复合物的理论计算与实验研究进展,并对该领域未来的研究工作进行了展望。  相似文献   

15.
Materials for hydrogen storage: current research trends and perspectives   总被引:1,自引:0,他引:1  
Storage and transport of hydrogen constitutes a key enabling technology for the advent of a hydrogen-based energy transition. Main research trends on hydrogen storage materials, including metal hydrides, porous adsorbents and hydrogen clathrates, are reviewed with a focus on recent developments and an appraisal of the challenges ahead. .  相似文献   

16.
Research into new reversible hydrogen storage materials has the potential to help accelerate the transition to a hydrogen economy. The discovery of an efficient and cost-effective method of safely storing hydrogen would revolutionise its use as a sustainable energy carrier. Accurately measuring storage capacities – particularly of novel nanomaterials – has however proved challenging, and progress is being hindered by ongoing problems with reproducibility. Various metal and complex hydrides are being investigated, together with nanoporous adsorbents such as carbons, metal-organic frameworks and microporous organic polymers. The hydrogen storage properties of these materials are commonly determined using either the manometric (or Sieverts) technique or gravimetric methods, but both approaches are prone to significant error, if not performed with great care. Although commercial manometric and gravimetric instruments are widely available, they must be operated with an awareness of the limits of their applicability and the error sources inherent to the measurement techniques. This article therefore describes the measurement of hydrogen sorption and covers the required experimental procedures, aspects of troubleshooting and recommended reporting guidelines, with a view of helping improve reproducibility in experimental hydrogen storage material research.  相似文献   

17.
Solid‐state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on‐board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high‐performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage.

  相似文献   


18.
Hydrogen‐rich materials are potential high‐temperature superconductors at pressures lower than metal hydrogen, mainly because hydrogen atoms can provide strong electron–phonon coupling and high phonon frequencies in hydrogen‐rich materials. This review provides a systematic overview of the crystal type, stability, pressure‐induced transition, metallization and superconductivity of binary light‐metal hydrides under high pressure.  相似文献   

19.
Hydrogen has been receiving great attention as an energy carrier for potential green energy applications. Hydrogen storage is one of the most crucial factors controlling the hydrogen economy and its future applications. Amongst the several options of hydrogen storage, light metal hydrides, particularly nanocrystalline magnesium hydride (MgH2), possess attractive properties, making them desired hydrogen storage materials. The present study aimed to improve the hydrogen storage properties of MgH2 upon doping with different concentrations of zirconium carbide (ZrC) nanopowders. Both MgH2 and ZrC were prepared using reactive ball milling and high-energy ball milling techniques, respectively. The as-prepared MgH2 powder was doped with ZrC (2, 5, and 7 wt%) and then high-energy-ball-milled for 25 h. During the ball milling process, ZrC powders acted as micro-milling media to reduce the MgH2 particle size to a minimal value that could not be obtained without ZrC. The as-milled nanocomposite MgH2/ZrC powders consisted of fine particles (~0.25 μm) with a nanosized grain structure of less than 7 nm. Besides, the ZrC agent led to the lowering of the decomposition temperature of MgH2 to 287 °C and the reduction in its apparent activation energy of desorption to 69 kJ/mol. Moreover, the hydrogenation/dehydrogenation kinetics of the nanocomposite MgH2/ZrC system revealed a significant improvement, as indicated by the low temperature and short time required to achieve successful uptake and release processes. This system possessed a high capability to tackle a long continuous cycle lifetime (1400 h) at low temperatures (225 °C) without showing serious degradation in its storage capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号