首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用电弧放电法制备了ZnO/C纳米球,利用FESEM、XRD和N2吸附/脱附测试进行了表征。在避光条件下研究了复合材料对亚甲基蓝的吸附性能。研究结果表明,随着亚甲基蓝的浓度及接触时间的增长吸附量明显上升,在吸附时间为150 min时达到吸附平衡。采用Langmuir、Freundlich及Temkin等温吸附模式对吸附平衡进行了研究。结果表明,吸附等温线符合Langmuir等温吸附模式,单层吸附饱和容量可达188.68 mg·g-1。利用动力学模型、内扩散模型和外扩散速率控制模型拟合实验数据,拟合数据表明其动力学符合伪二级动力学模型;内扩散机理不是吸附速率的唯一限制机理,亚甲基蓝的总吸附速率受膜扩散控制。  相似文献   

2.
采用电弧放电法制备了ZnO/C纳米球,利用FESEM、XRD和N2吸附/脱附测试进行了表征。在避光条件下研究了复合材料对亚甲基蓝的吸附性能。研究结果表明,随着亚甲基蓝的浓度及接触时间的增长吸附量明显上升,在吸附时间为150 min时达到吸附平衡。采用Langmuir、Freundlich及Temkin等温吸附模式对吸附平衡进行了研究。结果表明,吸附等温线符合Langmuir等温吸附模式,单层吸附饱和容量可达188.68 mg·g-1。利用动力学模型、内扩散模型和外扩散速率控制模型拟合实验数据,拟合数据表明其动力学符合伪二级动力学模型;内扩散机理不是吸附速率的唯一限制机理,亚甲基蓝的总吸附速率受膜扩散控制。  相似文献   

3.
A large amount of coal gasification slag is produced every year in China. However, most of the current disposal is into landfills, which causes serious harm to the environment. In this research, coal gasification fine slag residual carbon porous material (GFSA) was prepared using gasification fine slag foam flotation obtained carbon residue (GFSF) as raw material and an adsorbent to carry out an adsorption test on waste liquid containing methylene blue (MB). The effects of activation parameters (GFSF/KOH ratio mass ratio, activation temperature, and activation time) on the cation exchange capacity (CEC) of GFSA were investigated. The total specific surface area and pore volume of GSFA with the highest CEC were 574.02 m2/g and 0.467 cm3/g, respectively. The degree of pore formation had an important effect on CEC. The maximum adsorption capacity of GFSA on MB was 19.18 mg/g in the MB adsorption test. The effects of pH, adsorption time, amount of adsorbent, and initial MB concentration on adsorption efficiency were studied. Langmuir isotherm and quasi second-order kinetic model have a good fitting effect on the adsorption isotherm and kinetic model of MB.  相似文献   

4.
A batch system was applied to study the adsorption behavior of methylene blue (MB) and rhodamine B (RB) in single and binary component systems on natural zeolite. In the single component systems, the zeolite presents higher adsorption capacity for MB than RB with the maximal adsorption capacity of 7.95×10?5 and 1.26×10?5 mol/g at 55°C for MB and RB, respectively. Kinetic studies indicated that the adsorption followed pseudo‐second‐ order kinetics and could be described by a two‐step diffusion process. For the single component systems, the adsorption isotherm could be fitted by the Langmuir model. In the binary component system, MB and RB exhibit competitive adsorption on the zeolite. The adsorption is approximately reduced to 50% and 60% of single component adsorption systems of MB and RB, respectively at an initial concentration of 6×10?6 mol·L?1 at 25°C. In the binary component system, kinetic and adsorption isotherm studies demonstrate that the experimental data are following pseudo‐second‐order kinetics and Langmuir isotherm and kinetic data are fairly described by a two‐step diffusion model. Effect of solution pH on adsorption of MB and RB in both single and binary component systems was studied and the results were described by electrostatic interactions.  相似文献   

5.
邓琳  祁志美 《物理化学学报》2010,26(10):2672-2678
通过利用时间分辨光波导分光光谱技术原位测量从蛋白质-亚甲基蓝(MB)混合水溶液吸附到亲水玻璃光波导表面的MB可见光吸收谱,观测到在溶液pH值低于蛋白质等电点时MB与牛血清蛋白(BSA)以及MB与血红蛋白(Hb)存在竞争吸附行为,进一步测得这种竞争吸附行为对蛋白质浓度十分敏感,可以用于简单测定溶液中的蛋白质含量.基于Langmuir等温吸附理论推导出了两种分子竞争吸附的动力学方程,并利用该动力学方程对实验测得的吸光度随时间变化曲线进行了最佳拟合,揭示了玻璃表面吸附的MB分子个数在达到最大值后随时间呈指数衰减,同时得出拟合参数与蛋白质浓度呈准线性关系.  相似文献   

6.
The present study aims to determine the adsorption behaviour of methylene blue (MB) dye based on calix[8]arene-modified lead sulphide (PbS) nanoadsorbents under optimal conditions. Response surface methodology (RSM) was executed to evaluate the interactive effect of three factors (adsorbent dosage, contact time, and pH) on the adsorption of MB dye using a central composite design (CCD). The optimised values for adsorbent dosage, contact time, and pH solution were found to be 45.00 mg of calix[8]arene-modified PbS, contact time of 180 min, and pH 6. This study reports the results of batch adsorption experiments, which include the adsorption capacity, kinetics, and isotherm of the MB adsorption process. Pseudo-first order and pseudo-second order were demonstrated for their quality to fit the data. Pseudo-second order was the best in fitting the adsorption data with the higher R2 values (R2 > 0.928), indicating chemisorption to be the mechanism of adsorption. The Langmuir and Freundlich equilibrium models were employed to determine the isotherm parameters. The equilibrium assessment illustrated that the Langmuir isotherm model fitted well with the adsorption data, and a maximum MB adsorption capacity of 11.90 mg/g was achieved. The characterisation studies with EDX, FESEM, and FTIR indicated a successful synthesis of calix[8]arene-modified PbS.  相似文献   

7.
Jute fiber obtained from the stem of a plant was used to prepare activated carbon using phosphoric acid. Feasibility of employing this jute fiber activated carbon (JFC) for the removal of Methylene blue (MB) from aqueous solution was investigated. The adsorption of MB on JFC has found to dependent on contact time, MB concentration and pH. Experimental result follows Langmuir isotherm model and the capacity was found to be 225.64 mg/g. The optimum pH for the MB removal was found to be 5-10. The kinetic data obtained at different concentrations have been analyzed using a pseudo-first-order, pseudo-second-order equation, intraparticle diffusion and Elovich equation. Among the kinetic models studied, the intraparticle diffusion was the best applicable model to describe the adsorption of MB onto JFC.  相似文献   

8.
Activated carbon fibers (ACFS) with surface area of 1388 m2/g prepared from paper by chemical activation with KOH has been utilized as the adsorbent for the removal of methy-lene blue from aqueous solution. The experimental data were analyzed by Langmuir and Freundlich models of adsorption. The effects of pH value on the adsorption capacity of ACFS were also investigated. The rates of adsorption were found to conform to the kinetic model of Pseudo-second-order equation with high values of the correlation coefficients (R>0.998). The Langmuir isotherm was found to fit the experimental data better than the Feundlich isotherm over the whole concentration range. Maximum adsorption capacity of 520 mg/g at equilibrium was achieved. It was found that pH played a major role in the adsorption process, higher pH value favored the adsorption of MB.  相似文献   

9.
Adsorption of reactive dyes on titania-silica mesoporous materials   总被引:5,自引:0,他引:5  
This paper presents a study on the adsorption of two basic dyes, methylene blue (MB) and rhodamine B (RhB), from aqueous solution onto mesoporous silica-titania materials. The effect of dye structure, adsorbent particle size, TiO(2) presence, and temperature on adsorption was investigated. Adsorption data obtained at different solution temperatures (25, 35, and 45 degrees C) revealed an irreversible adsorption that decreased with the increment of T. The presence of TiO(2) augmented the adsorption capacity (q(e)). This would be due to possible degradation of the dye molecule in contact with the TiO(2) particles in the adsorbent interior. The adsorption enthalpy was relatively high, indicating that interaction between the sorbent and the adsorbate molecules was not only physical but chemical. Both Langmuir and Freundlich isotherm equations were applied to the experimental data. The obtained parameters and correlation coefficients showed that the adsorption of the two reactive dyes (MB and RhB) on the adsorbent systems at the three work temperatures was best predicted by the Langmuir isotherm, but not in all cases. The kinetic adsorption data were processed by the application of two simplified kinetic models, first and second order, to investigate the adsorption mechanism. It was found that the adsorption kinetics of methylene blue and rhodamine B onto the mesoporous silica-titania materials surface under different operating conditions was best described by the first-order model.  相似文献   

10.
Methylene blue (MB) removal using eco-friendly, cost-effective, and freely available Urtica was investigated. The morphology of the adsorbent surface and the nature of the possible Urtica and MB interactions were examined using SEM analysis and the FTIR technique, respectively. Various factors affecting MB adsorption such as adsorption time, initial MB concentration, temperature, and solution pH were investigated. The adsorption process was analysed using different kinetic models and isotherms. The results showed that the MB adsorption kinetic follows a pseudo-second-order kinetic model and the isotherm data fit the Langmuir isotherm well. Thermodynamic parameters, such as ΔG°, ΔH°, and ΔS°, were also evaluated, and the results indicated that the adsorption process is endothermic and spontaneous in nature. The MB adsorption capacity of Urtica was found to be as high as 101.01 mg g?1, higher than those of many other adsorbents studied in the literature. This superior adsorption capacity, along with the ready availability of Urtica, render this adsorbent potentially suitable for practical applications.  相似文献   

11.
N-isopropylacrylamide/maleic acid hydrogels containing different quantities of maleic acid have been synthesized with γ-radiation. The hydrogels were used in experiments on swelling, diffusion and adsorption of a cationic dye methylene blue. The diffusion of MB into the hydrogels was found to be the non-Fickian type. The factors influencing adsorption capacity of the hydrogel such as gel composition, and irradiation dose were systematically investigated. The equilibrium data for dye adsorption was better described by the Freundlich isotherm than Langmuir isotherm model. The kinetic studies showed that the pseudo-second-order kinetic model fits better than the data obtained from pseudo-first-order model.  相似文献   

12.
In this research, response surface methodology (RSM) approach using Central Composite Design (CCD) coupled by derivative spectrophotometry method was applied to develop mathematical model and optimize process parameters for simultaneous adsorption of methylene blue (MB) and malachite green (MG) from aqueous solution using Ni:FeO(OH) ‐ NWs‐AC. The optimal conditions to adsorption of MB and MG in binary mixture solution from aqueous solution were found at pH 8.0, MB concentration 20 mg L‐1, MG concentration 20 mg L‐1, adsorbent dosage 0.033 g and contact time 40 min. At these conditions, high adsorption efficiency (99.39% and 100.0% for MB and MG, respectively) was achieved. Among experimental equilibrium, Langmuir isotherm model fitted well with maximum monolayer adsorption capacity of 28.6 and 29.8 mg g‐1 for MB and MG, respectively. The adsorption kinetic data followed pseudo second‐order kinetics for MB and MG dyes.  相似文献   

13.
In this study, activated carbon was blended with grape stalks powder to adsorb methylene blue (MB) dye with various concentrations from a wastewater. For this purpose, five independent variables involving pH (2–13), contact time (5–270 min), grape stalks powder dosage (0.1–10 g/l), methylene blue initial concentration (20–300 mg/l), and activated carbon dosage (0.1–10 g/l) for methylene blue adsorption were studied. The Central Composite Design (CCD) under Response Surface Methodology (RSM) was applied to estimate the independent variables effects on the methylene blue adsorption. The pseudo- first order, pseudo-second order, Elovich and intraparticle diffusion models were employed to study the adsorption kinetics and isotherm. The Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models were applied to investigate the adsorption isotherm. It was concluded that the intraparticle diffusion isotherm and pseudo-second order kinetic models could show the best results. Furthermore, some data such as physical adsorption (by analyzing FTR and applying some standard equations) and mean free energy (E) were discovered in this research. Finally, activated carbon blended with grape stalks powder as an effective bio-adsorbent for the methylene blue reduction from a wastewater was introduced.  相似文献   

14.
The adsorption of methylene blue (MB) dye from aqueous solution onto a cashew nut shell (CNS) was investigated as a function of parameters such as solution pH, CNS dose, contact time, initial MB dye concentration and temperature. The CNS was shown to be effective for the quantitative removal of MB dye, and the equilibrium was reached in 60 min. The experimental data were analysed by two-parameter isotherms (Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models) using nonlinear regression analysis. The characteristic parameters for each isotherm and the related correlation coefficients were determined. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were also evaluated, the sorption process was found to be spontaneous and exothermic. Pseudo-first-order, pseudo-second-order and Elovich kinetic models were used to analyze the adsorption process. The results of the kinetic study suggest that the adsorption of MB dye matches the pseudo-second-order equation, suggesting that the adsorption process is presumably chemisorption. The adsorption process was found to be controlled by both surface and pore diffusion. Analysis of adsorption data using a Boyd kinetic plot confirmed that the external mass transfer is a rate determining step in the sorption process. A single-stage batch adsorber was designed for different CNS doses to effluent volume ratios using the Freundlich equation. The results indicated that the CNS could be used effectively to adsorb MB dye from aqueous solutions.  相似文献   

15.
使用硅烷偶联剂KH550改性埃洛石纳米管获得改性材料HNTs-APTS,并对其吸附亚甲基蓝的行为进行研究。利用傅立叶变换红外光谱仪(FTIR)、X-衍射仪(XRD)对改性前后的埃洛石进行表征。考察了吸附时间和温度对吸附过程的影响,并采用Lagrange准二级动力学方程、Langmuir等温线方程及Freundlich等温线方程对实验数据进行拟合。结果表明,KH550成功负载到埃洛石表面;改性后材料的吸附能力大大提高。改性埃洛石对亚甲基蓝的吸附约在60 min达平衡,最大吸附容量为21.66 mg/g。其吸附过程符合准二级动力学方程,热力学较好地符合Langmuir等温线方程,且吸附过程为自发吸热,升高温度有利于吸附的进行。改性材料可重复再生6次,具有良好的再生性能,可在工业处理亚甲基蓝废水中使用。  相似文献   

16.
Kinetic, equilibrium, and thermodynamic studies were performed for the batch adsorption of methylene blue (MB) on the high lime fly ash as a low cost adsorbent material. The studied operating variables were adsorbent amount, contact time, dye concentration, and temperature. The kinetic data were analyzed using the pseudo-first order and pseudo-second order kinetic models and the adsorption kinetic was followed well by the pseudo-second order kinetic model. The equilibrium data were fitted with the Freundlich, Langmuir, and Dubinin Radushkevich (D–R) isotherms and the equilibrium data were found to be well represented by the Freundlich and D–R isotherms. Based on these two isotherms MB is taken by chemical ion exchange and active sites on the high lime fly ash have different affinities to MB molecules. Various thermodynamic parameters such as enthalpy of adsorption (ΔH°), free energy change (ΔG°), and entropy change (ΔS°) were investigated. The positive value of ΔH° and negative value of ΔG° indicate that the adsorption is endothermic and spontaneous. The positive value of ΔS° shows the increased randomness at the solid–liquid interface during the adsorption. A single-stage batch adsorber was also designed based on the Freundlich isotherm for the removal of MB by the high lime fly ash.  相似文献   

17.
《印度化学会志》2023,100(4):100974
Removal of Methylene Blue (MB) dye using Litchi Leaves Powder (LLP) material was carried out in batch mode. Effect of the mass of the adsorbent (0.1–2.5 g/L), pH of the solution (2−12), starting concentration of MB dye (50–150 mg/L), ionic strength using NaCl (0.1–0.5 M) as an electrolyte, contact time (0–60 min) on the adsorption of MB dye was studied. To calculate pH at which LLP material surface becomes neutral point of zero charge (pHpzc) is also determined and found to be 6.48. Removal process best fit in the pseudo-second-order kinetic model as indicated by its higher R2 value (0.999). Isotherm models (Freundlich and Langmuir) were fitted to the data obtained from the experiment to understand the adsorption behaviour. Result shows that experimental data were fitted to the both isotherm models (Freundlich and Langmuir) as indicated by higher R2 value for both Freundlich (0.991) and Langmuir (0.994) model, and it was determined that LLP has a maximum adsorption capacity of 119.76 mg/g.  相似文献   

18.
The removal efficiency of Reactive Blue 19 (RB19) by using surfactant-modified bentonite (MB) from aqueous solutions, and also textile wastewater samples was examined. Natural bentonite (NB) was firstly modified with didodecyldimethylammonium bromide (DDDAB) in order to increase the removal capacity of bentonite. MB was then characterized by Fourier Transformed Infrared Spectrophotometer (FTIR), x-ray diffractometry (XRD), x-ray fluorescence (XRF), Scanning Electron Microscope (SEM)/EDX, zeta potential, elemental, and thermal analysis techniques. The high adsorption capacity of MB was 407.7?mg g?1 at pH?=?1.5 and 20°C. The adsorption of Reactive Blue 19 onto MB agreed with the pseudo-second-order kinetic and Langmuir isotherm models.  相似文献   

19.
In this study, a novel carboxymethyl functionalized β-cyclodextrin-modified graphene oxide (CM-β-CD-GO) adsorbent was designed and fabricated. The CM-β-CD-GO was applied to remove methylene blue (MB) from aqueous solutions. The adsorption mechanism was discussed in detail through the study of pH effect, kinetics, and isotherm models. The adsorption of CM-β-CD-GO for MB displayed high removal rates at the pH range of 6.0–10.0, and the removal efficiency is over 90% within 20 min. The pseudo-second-order model could well describe the kinetic process of MB adsorption, and the adsorption was determined by the multi-step process. The maximum uptake capability of CM-β-CD-GO towards MB was 245.70 mg g−1 at 25 °C according to Langmuir isotherm model. A possible adsorption mechanism that electrostatic attraction, π-π interaction, and host-guest supramolecular interactions supported MB adsorption was proposed. The adsorption capacity of CM-β-CD-GO showed no significant change after five cycles. The structure and morphology of CM-β-CD-GO were characterized by XPS, FT-IR, TGA, PXRD, AFM, SEM, zeta (ζ) potential determination, and Raman spectroscopy. This work provides valuable information for the design of novel adsorbents that specifically and efficiently adsorb cationic dyes contaminants.  相似文献   

20.
利用甘蔗渣提取纤维素修饰环糊精聚合物,成功制备可再生纤维素/环糊精聚合物(SUG-EPI-CDP)吸附剂。采用傅利叶红外光谱仪(FT-IR)与热重分析仪(TGA)对材料进行表征,同时考察了该材料对水中亚甲基蓝(MB)吸附特性和机理的影响。结果表明:在溶液pH值为7、温度为30 ℃的条件下,SUG-EPI-CDP可在120 min内有效去除MB,去除率达80.9%。通过模型拟合发现,SUG-EPI-CDP对MB的吸附是自发且吸热的过程,符合准二阶动力学方程和Langmuir等温线模型。该吸附剂实验最大吸附量达8.1 mg/g,远高于其他废料所制备的吸附剂。结果表明,利用可再生纤维素修饰可有效提高环糊精聚合物的吸附性能,同时为甘蔗渣资源化利用提供了新途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号