首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Epidemiological studies have demonstrated that the intake of green tea is effective in reducing the risk of dementia. The most important component of green tea is epigallocatechin gallate (EGCG). Both EGCG and epigallocatechin (EGC) have been suggested to cross the blood–brain barrier to reach the brain parenchyma, but EGCG has been found to be more effective than EGC in promoting neuronal differentiation. It has also been suggested that the products of EGCG decomposition by the intestinal microbiota promote the differentiation of nerve cells and that both EGCG and its degradation products act on nerve cells with a time lag. On the other hand, the free amino acids theanine and arginine contained in green tea have stress-reducing effects. While long-term stress accelerates the aging of the brain, theanine and arginine suppress the aging of the brain due to their anti-stress effect. Since this effect is counteracted by EGCG and caffeine, the ratios between these green tea components are important for the anti-stress action. In this review, we describe how green tea suppresses brain aging, through the activation of nerve cells by both EGCG and its degradation products, and the reductions in stress achieved by theanine and arginine.  相似文献   

2.
In this study, a capillary electrophoresis‐based online immobilized enzyme microreactor was developed for evaluating the inhibitory activity of green tea catechins and tea polyphenol extracts on trypsin. The immobilized trypsin activity and other kinetic parameters were evaluated by measuring the peak area of the hydrolyzate of chromogenic substrate S‐2765. The results indicated that the activity of the immobilized trypsin remained approximately 90.0% of the initial immobilized enzyme activity after 30 runs. The value of Michaelis–Menten constant (Km) was (0.47 ± 0.08) mM, and the half‐maximal inhibitory concentration (IC50) and inhibition constant (Ki) of benzamidine were measured as 3.34 and 3.00 mM, respectively. Then, the inhibitory activity of four main catechins (epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate) and three tea polyphenol extracts (green tea, white tea, and black tea) on trypsin were investigated. The results showed that four catechins and three tea polyphenol extracts had potential trypsin inhibitory activity. In addition, molecular docking results illustrated that epigallocatechin gallate, epicatechin gallate, epicatechin, and epigallocatechin were all located not only in the catalytic cavity, but also in the substrate‐binding pocket of trypsin. These results indicated that the developed method is an effective tool for evaluating inhibitory activity of catechins on trypsin.  相似文献   

3.
Potential of an “electronic tongue” multisensor system in identification of various tea samples and in quantitative analysis of separate tea components was studied. As a reference method for quantitative analysis of antioxidants of the polyphenolic type served micellar electrokinetic chromatography with a UV detector. The contents of epicatechin gallate, epigallocatechin gallate, epicatechin, epigallocatechin, gallic acid, gallocatechin gallate, and caffeine alkaloid in various tea samples were quantitatively estimated.  相似文献   

4.
茶中茶多酚的高效液相色谱法分离分析   总被引:21,自引:3,他引:18  
用改进的Agarwal方法萃取不同种类茶叶和茶饮料中的茶多酚,建立了用高效液相色谱(HPLC)法对茶多酚进行分离分析方法。HPLC可有效分离GTPs主要组成成分EC、EGC、ECG和EGCG并精确定量,相对标准偏差小于5%。茶叶加工过程对GTPs含量有很大影响,绿茶总GTPs含量在6 ̄15g/100g干茶叶、乌龙茶总GTPs含量在5 ̄7g/100g干茶叶,红茶总GTPs含量低于2g/100g干茶叶  相似文献   

5.
The Camellia sinensis plant provides a wide diversity of black, green, oolong, yellow, brick dark, and white tea. Tea is one of the majorly used beverages across the globe, succeeds only in the water for fitness and pleasure. Generally, green tea has been preferred more as compared to other teas due to its main constituent e.g. polyphenols which contribute to various health benefits. The aim of this updated and comprehensive review is to bring together the latest data on the phytochemistry and pharmacological properties of Camellia sinensis and to highlight the therapeutic prospects of the bioactive compounds in this plant so that the full medicinal potential of Camellia sinensis can be realised. A review of published studies on this topic was performed by searching PubMed/MedLine, Scopus, Google scholar, and Web of Science databases from 1999 to 2022. The results of the analysed studies showed that the main polyphenols of tea are the four prime flavonoids catechins: epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), and epicatechin (EC) along with the beneficial biological properties of tea for a broad heterogeneity of disorders, including anticancer, neuroprotective, antibacterial, antiviral, antifungal, antiobesity, antidiabetes and antiglaucoma activities. Poor absorption and low bioavailability of bioactive compounds from Camellia sinensis are limiting aspects of their therapeutic use. More human clinical studies and approaching the latest nanoformulation techniques in nanoparticles to transport the target phytochemical compounds to increase therapeutic efficacy are needed in the future.  相似文献   

6.
The polyphenol content of tea depends on the growing region, harvest date, the production process used, and the brewing parameters. In this study, research was undertaken that included an analysis of the influence of the brewing process parameters on the content of total polyphenols (Folin-Ciocalteu), epigallocatechin gallate (HPLC), and antioxidant activity (against DPPH radicals) of fresh tea shrub leaves grown from Taiwan and of teas obtained from them (oolong, green in bags, and green loose from the spring and autumn harvest). The antioxidant potential was determined in the methanol and aqueous extracts, as well as in infusions that were obtained by using water at 65 or 100 °C and infusing the tea for 5 or 10 min. The highest content of total polyphenols and epigallocatechin gallate was found in green tea extracts from the spring harvest. However, in the case of infusions, the highest content of these compounds was found in green tea in bags. Steaming at 100 °C for 10 min, turned out to be the most favourable condition for the extraction. Oolong tea, brewed at 100 °C for 5 min was characterised by the highest antioxidant activity against stable DPPH radicals.  相似文献   

7.
The health benefits of green tea are associated with its high catechin content. In scientific studies, green tea is often prepared with deionized water. However, casual consumers will simply use their local tap water, which differs in alkalinity and mineral content depending on the region. To assess the effect of water hardness on catechin and caffeine content, green tea infusions were prepared with synthetic freshwater in five different hardness levels, a sodium bicarbonate solution, a mineral salt solution, and deionized water. HPLC analysis was performed with a superficially porous pentafluorophenyl column. As water hardness increased, total catechin yield decreased. This was mostly due to the autoxidation of epigallocatechin (EGC) and epigallocatechin gallate (EGCG). Epicatechin (EC), epicatechin gallate (ECG), and caffeine showed greater chemical stability. Autoxidation was promoted by alkaline conditions and resulted in the browning of the green tea infusions. High levels of alkaline sodium bicarbonate found in hard water can render some tap waters unsuitable for green tea preparation.  相似文献   

8.
绿茶多酚对自由基诱导的红细胞膜过氧化的抑制作用   总被引:5,自引:0,他引:5  
采用水溶性偶氮引发剂2,2'-偶氮二(2-脒基丙烷)二盐酸盐(AAPH)在37引发入血红细胞膜的过氧化,通过测定氧气吸收及维生素E的消耗研究了过氧化过程的动力学,并对从绿茶中提取的主要多酚类化合物的抗氧化活性做了定量研究。使用的绿茶多酚有:(-)-表儿茶素(EC),(-)-表儿茶素(EGC),(-)-表儿茶素酸酯(ECG)和(-)-表儿茶素培酸酯(EGCG)。结果表明,这些绿茶多酚能够显著缩短过氧化反应的动力学链长,有效地抑制红细胞膜的过氧化。抗氧化活性顺序为:EC〉GCG〉EGCG〉EGC。  相似文献   

9.
采用高效液相色谱-质谱联用技术及高效液相色谱法对生熟普洱茶中的主要成分进行定性和定量分析。鉴定出普洱茶水溶液中8种主要成分,分别为没食子酸(GA)、没食子酸儿茶素(GC)、表没食子酸儿茶素(EGC)、儿茶素(C)、咖啡因(CAF)、表儿茶素(EC)、表没食子酸儿茶素没食子酸酯(EGCG)和表儿茶素没食子酸酯(ECG)。以这8种成分的含量为指标,对普洱生茶和熟茶各20批进行主成分分析、聚类分析和判别分析,能准确地区分普洱生茶与熟茶。  相似文献   

10.
Column liquid chromatography on a C18-bonded silica column with water-methanol-acetic acid as eluent was used to determine polyphenols and caffeine in tea. Without any pretreatment, catechin, epicatechin gallate, epigallocatechin gallate, epigallocatechin, epicatechin and caffeine were separated successfully within 15 min. The detection limits (S/N = 3) of polyphenols studied were 1.8-24 mg/l at a detection wavelength 270 nm. The linear range of the peak area calibration curves for the analytes were over two orders of magnitude with a correlation coefficient of 0.996-0.999. Using this method, some Chinese tea samples were analyzed with a good reproducibility (RSD are below 5%).  相似文献   

11.
A high-performance liquid chromatographic method with electrochemical detection was developed for the determination of twelve tea catechins including four major catechins: epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and epigallocatechin gallate (EGCG); four of their epimers at the C-2 position, C, GC, CG and GCG; and four methylated catechin derivatives, epigallocatechin-3-O-(3-O-methyl)gallate, gallocatechin-3-O-(3-O-methyl)gallate, epigallocatechin-3-O-(4-O-methyl)gallate and epicatechin-3-O-(3-O-methyl)gallate. These catechins were separated on an ODS C18 reversed-phase column by isocratic elution with 0.1 M NaH2PO4 buffer (pH 2.5)-acetonitrile (87:13) containing 0.1 mM EDTA.2Na. The detection limits (S/N = 3) of these catechins were approximately 10-40 pmol ml-1 at an applied voltage of 600 mV. Extracting these catechins from tea leaf powder with H2O-acetonitrile (1:1) at 30 degrees C for 40 min inhibited the epimerization at C-2 significantly from these epicatechins compared to extraction with hot water at 90 degrees C. This analytical method is sensitive to and appropriate for the simultaneous determination of various biologically active catechins in green tea.  相似文献   

12.
Catechins are the principle polyphenolic compounds in green tea; the four major compounds identified are epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECg) and epigallocatechin gallate (EGCg). Tea catechins tend to attach externally to their targets, such as viral envelopes, cell membranes, or the surface of low-density lipoproteins. In order to further our understanding of the molecular mobility of these compounds in cells, we examined the interaction of tea catechins with lipid membranes using solid-state NMR techniques. Our previous work indicated that the EGCg molecule is incorporated into lipid bilayers in a unique orientation. However, the detailed configuration, orientation, and dynamics of EGCg in lipid bilayers have not been well-characterized. Here, we investigated the orientation and dynamics of EGCg incorporated into multi-lamellar vesicles (MLVs) and bicelles using solid-state NMR spectroscopy.  相似文献   

13.
Potential effects of tea and its constituents on SARS-CoV-2 infection were assessed in vitro. Infectivity of SARS-CoV-2 was decreased to 1/100 to undetectable levels after a treatment with black tea, green tea, roasted green tea, or oolong tea for 1 min. An addition of (−) epigallocatechin gallate (EGCG) significantly inactivated SARS-CoV-2, while the same concentration of theasinensin A (TSA) and galloylated theaflavins including theaflavin 3,3′-di-O-gallate (TFDG) had more remarkable anti-viral activities. EGCG, TSA, and TFDG at 1 mM, 40 µM, and 60 µM, respectively, which are comparable to the concentrations of these compounds in tea beverages, significantly reduced infectivity of the virus, viral RNA replication in cells, and secondary virus production from the cells. EGCG, TSA, and TFDG significantly inhibited interaction between recombinant ACE2 and RBD of S protein. These results suggest potential usefulness of tea in prevention of person-to-person transmission of the novel coronavirus.  相似文献   

14.
The Chinese green tea extract was found to strongly inhibit the growth of major food-borne pathogens, Escherichia coli O157:H7, Salmonella Typhimurium DT104, Listeria monocytogenes, Staphylococcus aureus, and a diarrhoea food-poisoning pathogen Bacillus cereus, by 44-100% with the highest activity found against S. aureus and lowest against E. coli O157:H7. A bioassay-guided fractionation technique was used for identifying the principal active component. A simple and efficient reversed-phase high-speed counter-current chromatography (HSCCC) method was developed for the separation and purification of four bioactive polyphenol compounds, epicatechin gallate (ECG), epigallocatechin gallate (EGCG), epicatechin (EC), and caffeine (CN). The structures of these polyphenols were confirmed with mass spectrometry. Among the four compounds, ECG and EGCG were the most active, particularly EGCG against S. aureus. EGCG had the lowest MIC90 values against S. aureus (MSSA) (58 mg/L) and its methicilin-resistant S. aureus (MRSA) (37 mg/L). Scanning electron microscopy (SEM) studies showed that these two compounds altered bacterial cell morphology, which might have resulted from disturbed cell division. This study demonstrated a direct link between the antimicrobial activity of tea and its specific polyphenolic compositions. The activity of tea polyphenols, particularly EGCG on antibiotics-resistant strains of S. aureus, suggests that these compounds are potential natural alternatives for the control of bovine mastitis and food poisoning caused by S. aureus.  相似文献   

15.
An emerging green solvent called a deep eutectic solvent(DES) was applied to the extraction and determination of catechin(C),(+)epicatechin gailate(ECG) and (-)epigallocatechin gallate(EGCG) from Chinese green tea.After evaluating different combinations of them by extraction methods and DESs,a DES-based extraction method was established and optimized by a systematic investigation of the influencing factors.As a result,a total of 3.629,35.25 or 114.2 mg/g catechin,(+)epicatechin gallate or (-)epigaliocatechin gallate were extracted respectively under optimal conditions with extraction efficiencies of 82.7%,92.3% and 97.0%,respectively.By comparing with other common used solvents for extracting catechin compounds,DESs were proved to be potential extraction solvents for bioactive ingredients.  相似文献   

16.
茶叶及茶多酚中儿茶素的高效液相色谱分析方法研究   总被引:41,自引:0,他引:41  
戴军  王洪新  陈尚卫  汤坚 《色谱》2001,19(5):398-402
 筛选出HypersilBDSC18和ZorbaxSBC18两种适合同时分离茶叶和茶多酚中 7种儿茶素和咖啡因的反相柱。采用甲醇 水 醋酸 (或三氟醋酸 )作流动相 ,分别以等强度洗脱和梯度洗脱 (均在 30min内 )分离测定了我国 6种不同产地茶叶样品和 3种茶多酚样品中 7种儿茶素的含量。考察了 7种儿茶素和咖啡因的保留值与流动相组成及柱温的关系 ,优化了色谱条件及样品前处理方法。用电喷雾电离质谱 (ESI MS)定性确认没食子儿茶素没食子酸酯(GCG)和儿茶素没食子酸酯 (CG)两组分 ,并用高效液相色谱制备两对照品用于定量分析。  相似文献   

17.
It was established that the components of tea are oxidized on a glassy carbon electrode modified with carbon nanotubes and electropolymerized quercetin in a phosphate buffer solution (pH 7.0) as a supporting electrolyte under conditions of differential pulse voltammetry. The oxidation potentials of the individual phenolic antioxidants of tea (gallic acid, rutin, quercetin, catechin, epigallocatechin gallate, and tannin) on the modified electrode were found. A method for the chronoamperometric determination of the antioxidant capacity (AOC) of tea was developed based on the oxidation of tea antioxidants at a potential of 0.20 V. The AOC of tea was evaluated using а difference between the oxidation currents of the analyte and a supporting electrolyte after 50 s of electrolysis in terms of gallic acid. The analytical range of gallic acid was 0.25?750 μM with a detection limit of 0.063 μM. Positive correlations of the AOC with antioxidant activity in a reaction with 2,2-diphenyl-1-picrylhydrazyl and the total phenolic content were found (r = 0.700 and 0.647 at r crit = 0.396, respectively).  相似文献   

18.
Momordica charantia is a popular vegetable associated with effective complementary and alternative diabetes management in some parts of the world. However, the molecular mechanism is less commonly investigated. In this study, we investigated the association between a major cucurbitane triterpenoid isolated from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (THCB) and peroxisome proliferator activated receptor gamma (PPARγ) activation and its related activities using cell culture and molecular biology techniques. In this study, we report on both M. charantia fruit crude extract and THCB in driving the luciferase activity of Peroxisome Proliferator Response Element, associated with PPARγ activation. Other than that, THCB also induced adipocyte differentiation at far less intensity as compared to the full agonist rosiglitazone. In conjunction, THCB treatment on adipocytes also resulted in upregulation of PPAR gamma target genes expression; AP2, adiponectin, LPL and CD34 at a lower magnitude compared to rosiglitazone’s induction. THCB also induced glucose uptake into muscle cells and the mechanism is via Glut4 translocation to the cell membrane. In conclusion, THCB acts as one of the many components in M. charantia to induce hypoglycaemic effect by acting as PPARγ ligand and inducing glucose uptake activity in the muscles by means of Glut4 translocation.  相似文献   

19.
《Analytical letters》2012,45(16):2300-2309
A molecularly imprinted polymer (MIP), which was suitable for recognizing epigallocatechin gallate (EGCG), was prepared by using EGCG as template molecule and biocompatible chitosan as a functional matrix in aqueous medium. Molecular recognition ability of the EGCG-imprinted polymer (EIP) was evaluated by high performance liquid chromatography (HPLC). The results show that the EIP has a high imprinting factor (1.32) for EGCG and was used to purify EGCG from crude tea polyphenol efficiently. The percentage of EGCG can be improved from 78.6% in crude tea polyphenol (TP) to 90.1% in product and the adsorption quantity per unit can reach 4.02 mg · g?1. EIP shows potential excellent prospect in the application of separating and purifying EGCG from TP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号