首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A novel all-solid-state thin-film-type rechargeable lithium-ion battery employing in situ prepared both positive and negative electrode materials is proposed. A lithium-ion conducting solid electrolyte sheet of Li2O–Al2O3–TiO2–P2O5-based glass–ceramic manufactured by OHARA Inc. (OHARA sheet) was used as the solid electrolyte, which was sandwiched by Cu and Mn metal films. The Cu/OHARA sheet/Mn layer became an all-solid-state lithium-ion battery after applying d.c. 16 V to the layer, and the resultant battery operated at 0.3–0.8 V with reversible capacity of 0.45 μAh cm?2. High voltage battery was successfully prepared by applying the d.c. high voltage to a five-series of Cu/OHARA sheet/Mn layer, resulting in all-solid-state battery operating at 1.5–4.0 V. The proposed fabrication process will become a new technology to develop advanced all-solid-state rechargeable lithium-ion batteries.  相似文献   

2.
All-solid-state polymer lithium-ion batteries are ideal choice for the next generation of rechargeable lithium-ion batteries due to their high energy, safety and flexibility. Among all polymer electrolytes, PEO-based polymer electrolytes have attracted extensive attention because they can dissolve various lithium salts. However, the ionic conductivity of pure PEO-based polymer electrolytes is limited due to high crystallinity and poor segment motion. An inorganic filler SiO2 nanospheres and a plasticizer Succinonitrile (SN) are introduced into the PEO matrix to improve the crystallization of PEO, promote the formation of amorphous region, and thus improve the movement of PEO chain segment. Herein, a PEO18−LiTFSI−5 %SiO2−5 %SN composite solid polymer electrolyte (CSPE) was prepared by solution-casting. The high ionic conductivity of the electrolyte was demonstrated at 60 °C up to 3.3×10−4 S cm−1. Meanwhile, the electrochemical performance of LiFePO4/CSPE/Li all-solid-state battery was tested, with discharge capacity of 157.5 mAh g−1 at 0.5 C, and capacity retention rate of 99 % after 100 cycles at 60 °C. This system provides a feasible strategy for the development of efficient all-solid-state lithium-ion batteries.  相似文献   

3.
Free‐standing poly(dibenzofuran) (PDBF) films were synthesized electrochemically by direct anodic oxidation of dibenzofuran in mixed electrolytes of boron trifluoride diethyl etherate (BFEE) containing certain amount of trifluoroacetic acid (TFA). The oxidation potential of dibenzofuran in pure BFEE was measured to be only 1.31 V versus saturated calomel electrode (SCE). This value was much lower than that determined in acetonitrile + 0.1 mol L?1 TBATFB (2.14 V vs. SCE). The addition of TFA to BFEE can further decrease the oxidation potential of the monomer to 1.07 V versus SCE in the mixed electrolyte of BFEE + 30% TFA. PDBF films obtained from this medium showed good electrochemical behavior, good electrochromic properties, and good thermal stability with conductivity of 100 S cm?1. FTIR and 1H NMR spectra showed that the polymer was grown mainly via the coupling of the monomer at C(3) C(10) or C(4) C(9) positions (Scheme 1). As‐formed PDBF films were partly soluble in tetrahydrofuran (THF) or chloroform. Fluorescent spectral studies indicated that either soluble or PDBF in solid state was a good blue light PDBF emitter. To the best of our knowledge, this is the first report that free‐standing PDBF films can be electrodeposited. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1125–1135, 2006  相似文献   

4.
One of the most significant consequences of technological evolution in the workplace has been a dramatic increase in the need for portable energy storage. This evolution has occurred, not only with respect to the number of devices, but also in their average energy storage capacity. An obvious commercial consequence has been an increased pressure to develop improved active materials for power sources and more efficient methods for battery production. In recent decades the growth of the commercial market for high performance batteries has been based on the development of both solid‐state and gel electrolytes. The incorporation of these electrolytes as components of various devices (advanced batteries, smart windows, displays and super‐capacitors) offers significant advantages relative to traditional electrolytes, including enhanced reliability and improved safety. The xerogel matrices prepared in this study are represented as U(900) and U(600) and contain 15.5 or 8.5 oxyethylene structural units (CH2CH2O) respectively. The oxyethylene chains are bonded at each end to a siliceous intersection through urea bridging links. These sol‐gel derived oxyethylene /siloxane xerogels (designated as di‐ureasils) were doped with controlled amounts of LiAsF6 or LiSbF6 to prepare a range of electrolyte compositions. The compositions prepared, with 200>n≥2.5 (where the salt content is expressed as n, the molar ratio of oxyethylene moieties to Li+ ions), were characterized by electrochemical and thermal techniques. Preliminary tests performed with a prototype electrochromic device (ECD) incorporating the most promising electrolyte composition, d‐U(900)8LiAsF6 as electrolyte and WO3 as cathodic electrochromic layer, are extremely encouraging.  相似文献   

5.
Sulfide solid electrolytes, which show high ion conductivity, are anticipated for use as electrolyte materials for all-solid-state batteries. One drawback of sulfide solid electrolytes is their low chemical stability in air. They are hydrolyzed by moisture and generate H2S gas. Substituting oxygen atoms for sulfur atoms in sulfide solid electrolytes is effective for suppression of H2S gas generation in air. Especially, the xLi2O·(75-x)Li2S·25P2S5 (mol%) glasses hardly generated H2S gas in air. However, substituting oxygen atoms for sulfur atoms caused a decrease in conductivity. The x?=?7 glass showed high chemical stability in air and maintained high conductivity of 2.5?×?10?4 S cm?1 at room temperature. Performance of cells using the 7Li2O·68Li2S·25P2S5 and the 75Li2S·25P2S5 glasses as solid electrolytes were compared. All-solid-state C/LiCoO2 cell using the 7Li2O·68Li2S·25P2S5 glass produced performance as good as that obtained using the 75Li2S·25P2S5 glass. Capacity retention and change of interfacial resistance of the former cell were superior to those of the latter cell after storage at 4.0 V and 60 °C. The diffusion of oxygen element into the 7Li2O·68Li2S·25P2S5 glass was less than that into the 75Li2S·25P2S5 glass after storage at the voltage of 4.0 V at 60 °C. Improvement of the stability of sulfide solid electrolytes to moisture was related to cell performance as well as an increase in conductivity.  相似文献   

6.
Transparent and ionic conductive polymeric electrolytes have been prepared through sol–gel method by adding titanium isopropoxide into an acidic polyethylene glycol (PEG) solution. After hydrolysis and condensation processes, new associations between titanium cations and ether oxygen atoms of PEG have been formed according to Fourier-transform infrared spectroscopy. Thermogravimetric analysis results of these hybrid materials indicate a better thermal stability with a less polydispersion of the molecular mass distribution in comparison with PEG. For the purpose of electrochromic or photoelectrochromic device applications, LiI was added into the hybrid materials to form solvent-free polymeric electrolytes. Optical transmittance spectra of these electrolytes show a red shift of the cutoff wavelength as a function of titanium isopropoxide percentage in the original sol–gel solutions. It is also observed that the amount of hydroxyl groups in the hybrid materials was reduced in comparison with the PEG one. This makes electrical conductivity of the hybrid electrolytes with LiI salt insensitive to humidity and solvents, which was about 2 × 10-4 Ω−1 cm−1 at room temperature. A solid WO3-based electrochromic device with the hybrid electrolyte keeps the same optical transmittance value after 1,000 cycles of switching polarization potentials between −1 and +1 V.  相似文献   

7.
The cross-linking gel copolymer electrolytes containing alkyl acrylates, triethylene glycol dimethacrylate, and liquid electrolyte were prepared by in situ thermal polymerization. The gel polymer electrolytes containing 15 wt% polymer content and 85 wt% liquid electrolyte content with sufficient mechanical strength showed the high ionic conductivity around 5?×?10?3 Scm?1 at room temperature. The gel electrolytes containing different polymer matrices were prepared, and their physical observation and conductivity were discussed carefully. The cross-linking copolymer gel electrolytes of alkyl acrylates with other monomers were designed and synthesized. The results showed that copolymerization can improve the mechanical properties and ionic conductivities of the gel electrolytes. The polymer matrices of gels had excellent thermal stability and electrochemical stability. The scanning electron microscope analysis showed the gel electrolyte was the homogeneous structure, and the cross-linking polymer host was the porous three-dimensional network structure, which demonstrated the high conductivity of the gel electrolytes. The gel polymer Li-ion battery was prepared by this in situ thermal polymerization. The cell exhibited high charge-discharge efficiency at 0.1 C. The results of LiFePO4-PEA-Li cell and graphite-PEA-Li cell showed that gel polymer electrolytes have good compatibility with the battery electrodes materials.  相似文献   

8.
A novel single lithium‐ion (Li‐ion) conducting polymer electrolyte is presented that is composed of the lithium salt of a polyanion, poly[(4‐styrenesulfonyl)(trifluoromethyl(S‐trifluoromethylsulfonylimino)sulfonyl)imide] (PSsTFSI?), and high‐molecular‐weight poly(ethylene oxide) (PEO). The neat LiPSsTFSI ionomer displays a low glass‐transition temperature (44.3 °C; that is, strongly plasticizing effect). The complex of LiPSsTFSI/PEO exhibits a high Li‐ion transference number (tLi+=0.91) and is thermally stable up to 300 °C. Meanwhile, it exhibits a Li‐ion conductivity as high as 1.35×10?4 S cm?1 at 90 °C, which is comparable to that for the classic ambipolar LiTFSI/PEO SPEs at the same temperature. These outstanding properties of the LiPSsTFSI/PEO blended polymer electrolyte would make it promising as solid polymer electrolytes for Li batteries.  相似文献   

9.
Electrochromic devices are fabricated by using polyaniline (PANI) doped with poly(styrene sulfonic acid) (PSS) as coloring electrodes, poly(ethylenedioxythiophene)‐poly(styrene sulfonic acid) (PEDOT‐PSS) as complementary electrodes, and hybrid polymer electrolytes as gel electrolytes. The device based on LiClO4‐based electrolyte (weight ratio of PMMA:PC:LiClO4 = 0.7:1.1:0.3) shows the highest optical contrast and coloration efficiency (333 cm2/C) after 1200 cycles in these devices, and the color changes from pale yellow (?0.5 V) to dark blue (+2.5 V). The spectroelectrochemical and electrochromic switching properties of electrochromic devices are investigated, the maximum optical contrast (ΔT%) of electrochromic device for ITO|PANI‐PSS‖PMMA‐PC‐LiClO4‐SiO2‖PEDOT‐PSS|ITO are 31.5% at 640 nm, and electrochromic device based on LiClO4‐based electrolyte with SiO2 shows faster response time than that based on LiClO4‐based electrolyte without SiO2.  相似文献   

10.
路密  史鹏飞 《中国化学》2004,22(1):47-50
Introduction Recently, polymer electrolytes have attracted much attention for their potential use in replacing flammable organic solvent electrolytes currently used in lith-ium-ion batteries, thus improving the safety of re-chargeable lithium batteries. Moreover, the batteries with PE can be made in any shape, which make fully use of the space of electronic devices. PEO is a linear polymer with helix structure, and its structure makes it have much higher dissolution ability for salt even tho…  相似文献   

11.
The present study focuses on the proton-conducting polymer electrolytes; poly (N-vinyl pyrrolidone)–ammonium thiocyanate and poly (N-vinyl pyrrolidone)–ammonium acetate prepared by solution casting technique. The XRD analysis indicates the amorphous nature of the polymer electrolytes. The Raman spectra of the C=O vibration of pure polymer PVP at 1,663 cm?1 has been appeared as doublet in the polymer electrolytes. The introduction of this new peak in the salt-doped polymer electrolytes may be due to interaction of the cation with the polymer. The room temperature ionic conductivity σ 303κ has been found to be high, 1.7?×?10?4 S cm?1 for 80 mol% PVP–20 mol% NH4SCN and 1.5?×?10?6 S cm?1 for 75 mol% PVP–25 mol% CH3COONH4. The polymer electrolytes have been tested for their application in Zn–air battery.  相似文献   

12.

Research towards solid polymer electrolytes based on biopolymers has grown extensively over the past years due to its abundance in nature, non-toxicity, low cost, and biodegradability. When compared to standard biopolymers, electrochemical study on natural gums is very limited. Therefore, in the present work, polymer electrolytes based on gum tragacanth have been prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS), thermogravimetry, and transference number studies. The polymer-salt complex formation is confirmed using FTIR studies while XRD spectra reveal the amorphous nature of the polymer membranes. The highest conductivity of 9.161?×?10?3 S/cm was obtained for the film with 1 g of gum tragacanth and 0.5 g of ammonium thiocyanate. The Thermogravimetry study showed that the electrolyte is thermally stable. The transference number study confirmed that the main charge carriers are ions. The primary battery has been constructed using the prepared electrolyte, and the OCV was found to be 1.31 V.

  相似文献   

13.
A new method to prepare the polymer electrolytes for lithium‐ion batteries is proposed. The polymer electrolytes were prepared by reacting poly(phosphazene)s (MEEPP) having 2‐(2‐methoxyethoxy)ethoxy and 2‐(phenoxy)ethoxy units with 2,4,6‐tris[bis(methoxymethyl)amino]‐1,3,5‐triazine (CYMEL) as a cross‐linking agent. This method is simple and reliable for controlling the cross‐linking extent, thereby providing a straightforward way to produce a flexible polymer electrolyte membrane. The 6 mol % cross‐linked polymer electrolyte (ethylene oxide unit (EO)/Li = 24:1) exhibited a maximum ionic conductivity of 5.36 × 10?5 S cm?1 at 100 °C. The 7Li linewidths of solid‐state static NMR showed that the ionic conductivity was strongly related to polymer segment motion. Moreover, the electrochemical stability of the MEEPP polymer electrolytes increased with an increasing extent of cross‐linking, the highest oxidation voltage of which reached as high as 7.0 V. Moreover, phenoxy‐containing polyphosphazenes are very useful model polymers to study the relationship between the polymer flexibility; that is, the cross‐linking extent and the mobility of metal ions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 352–358  相似文献   

14.
To promote the development of solid‐state batteries, polymer‐, oxide‐, and sulfide‐based solid‐state electrolytes (SSEs) have been extensively investigated. However, the disadvantages of these SSEs, such as high‐temperature sintering of oxides, air instability of sulfides, and narrow electrochemical windows of polymers electrolytes, significantly hinder their practical application. Therefore, developing SSEs that have a high ionic conductivity (>10?3 S cm?1), good air stability, wide electrochemical window, excellent electrode interface stability, low‐cost mass production is required. Herein we report a halide Li+ superionic conductor, Li3InCl6, that can be synthesized in water. Most importantly, the as‐synthesized Li3InCl6 shows a high ionic conductivity of 2.04×10?3 S cm?1 at 25 °C. Furthermore, the ionic conductivity can be recovered after dissolution in water. Combined with a LiNi0.8Co0.1Mn0.1O2 cathode, the solid‐state Li battery shows good cycling stability.  相似文献   

15.
High‐energy‐density Li metal batteries suffer from a short lifespan under practical conditions, such as limited lithium, high loading cathode, and lean electrolytes, owing to the absence of appropriate solid electrolyte interphase (SEI). Herein, a sustainable SEI was designed rationally by combining fluorinated co‐solvents with sustained‐release additives for practical challenges. The intrinsic uniformity of SEI and the constant supplements of building blocks of SEI jointly afford to sustainable SEI. Specific spatial distributions and abundant heterogeneous grain boundaries of LiF, LiNxOy, and Li2O effectively regulate uniformity of Li deposition. In a Li metal battery with an ultrathin Li anode (33 μm), a high‐loading LiNi0.5Co0.2Mn0.3O2 cathode (4.4 mAh cm?2), and lean electrolytes (6.1 g Ah?1), 83 % of initial capacity retains after 150 cycles. A pouch cell (3.5 Ah) demonstrated a specific energy of 340 Wh kg?1 for 60 cycles with lean electrolytes (2.3 g Ah?1).  相似文献   

16.
Electrical impedance spectroscopy was used to measure the conductivity of solid polymer electrolytes. From the impedance study, the highest ionic conductivity of solid polymer electrolytes based on carboxyl methylcellulose as polymer host and oleic acid as the doping salt, prepared by the solution casting method at room temperature, σr.t, is 2.11 × 10?5 S cm?1 for the sample containing 20 wt.% of oleic acid. Transference number measurement was performed to correlate the diffusion phenomena to the conductivity behavior of carboxyl methylcellulose-oleic acid solid polymer electrolytes. From the transference number measurement study, the conduction species carrier of the cation (+) is higher than that of the anion (?). Thus, the results proved that the samples are proton-conducting solid polymer electrolytes.  相似文献   

17.
Extending the conjugation of viologen by a planar thiazolo[5,4‐d]thiazole (TTz) framework and functionalizing the pyridinium with hydrophilic ammonium groups yielded a highly water‐soluble π‐conjugation extended viologen, 4,4′‐(thiazolo[5,4‐d]thiazole‐2,5‐diyl)bis(1‐(3‐(trimethylammonio)propyl)pyridin‐1‐ium) tetrachloride, [(NPr)2TTz]Cl4 , as a novel two‐electron storage anolyte for aqueous organic redox flow battery (AORFB) applications. Its physical and electrochemical properties were systematically investigated. Paired with 4‐trimethylammonium‐TEMPO (NMe‐TEMPO) as catholyte, [(NPr)2TTz]Cl4 enables a 1.44 V AORFB with a theoretical energy density of 53.7 Wh L?1. A demonstrated [(NPr)2TTz]Cl4 /NMe‐TEMPO AORFB delivered an energy efficiency of 70 % and 99.97 % capacity retention per cycle.  相似文献   

18.
New polymeric solid electrolyte films, consisting of crosslinked poly(N-vinylpyrrolidone) (PVPD) as matrix, and surfactant, sodium deoxycholate (NaDC), lithium deoxycholate (LiDC), sodium laulylsulfate (R12OSO3Na), or sodium palmitate (R15COONa) as electrolyte salt, are prepared; their basic structure and conductivity dependence on temperature are reported. The structure of the electrolytes is amorphous. Their conductivity is 3.1 × 10?5 S cm?1 (containing NaDC), 8.42 × 10?6 S cm?1 (LiDC), 2.18 × 10?4 S cm?1 (R12OSO3Na), and 7.27 × 10?5 S cm?1 (R15COONa) at 20°C. Their temperature dependence of the conductivity is similar to that of liquid electrolyte rather than that of usual polymeric solid electrolyte, i.e., the WLF-type dependence. The values of activation energy of conductivity (Ea) were PVPD, 25.5 kJ mol?1; PVPD/NaDC, 21.4 kJ mol?1; PVPD/LiDC, 25.3 kJ mol?1; PVPD/R12OSO3Na, 17.2 kJ mol?1; PVPD/R15COONa, 18.7 kJ mol?1. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
The copper complex [(bztpen)Cu](BF4)2 (bztpen=N‐benzyl‐N,N′,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine) displays high catalytic activity for electrochemical proton reduction in acidic aqueous solutions, with a calculated hydrogen‐generation rate constant (kobs) of over 10000 s?1. A turnover frequency (TOF) of 7000 h?1 cm?2 and a Faradaic efficiency of 96 % were obtained from a controlled potential electrolysis (CPE) experiment with [(bztpen)Cu]2+ in pH 2.5 buffer solution at ?0.90 V versus the standard hydrogen electrode (SHE) over two hours using a glassy carbon electrode. A mechanism involving two proton‐coupled reduction steps was proposed for the dihydrogen generation reaction catalyzed by [(bztpen)Cu]2+.  相似文献   

20.
We report that glass–ceramic Li2S–P2S5 electrolytes can be prepared by a single step ball milling (SSBM) process. Mechanical ball milling of the xLi2S·(100 − x)P2S5 system at 55 °C produced crystalline glass–ceramic materials exhibiting high Li-ion conductivity over 10−3 S cm−1 at room temperature with a wide electrochemical stability window of 5 V. Silicon nanoparticles were evaluated as anode material in a solid-state Li battery employing the glass–ceramic electrolyte produced by the SSBM process and showed outstanding cycling stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号