首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
化学   27篇
物理学   2篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2018年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  1998年   1篇
排序方式: 共有29条查询结果,搜索用时 187 毫秒
1.
2.
3.
A comparison between theory and experiment for the benchmark H + CD4 --> HD + CD3 abstraction reaction yields a reinterpretation of the reaction mechanism and highlights the unexpected contribution of a stripping mechanism. Whereas the best analytic surface fails to reproduce experiment, a first-principles direct-dynamics (on the fly) treatment is in good agreement, showing that the H + CD4 reaction exhibits extreme sensitivity to modest differences in the potential energy surface. We find that bent H-D-C transition state geometries play an important role in the dynamics. A simple model that relates the scattering angle impact parameter and cone of acceptance accounts well for the overall reaction dynamics.  相似文献   
4.
The effects of two nearly isoenergetic C-H stretching motions on the gas-phase reaction of atomic chlorine with methane are examined. First, a 1:4:9 mixture of Cl(2), CH(4), and He is coexpanded into a vacuum chamber. Then, either the antisymmetric stretch (nu(3)=3019 cm(-1)) of CH(4) is prepared by direct infrared absorption or the infrared-inactive symmetric stretch (nu(1)=2917 cm(-1)) of CH(4) is prepared by stimulated Raman pumping. Photolysis of Cl(2) at 355 nm generates fast Cl atoms that initiate the reaction with a collision energy of 1290+/-175 cm(-1) (0.16+/-0.02 eV). Finally, the nascent HCl or CH(3) products are detected state-specifically via resonance enhanced multiphoton ionization and separated by mass in a time-of-flight spectrometer. We find that the rovibrational distributions and state-selected differential cross sections of the HCl and CH(3) products from the two vibrationally excited reactions are nearly indistinguishable. Although Yoon et al. [J. Chem. Phys. 119, 9568 (2003)] report that the reactivities of these two different types of vibrational excitation are quite different, the present results indicate that the reactions of symmetric-stretch excited or antisymmetric-stretch excited methane with atomic chlorine follow closely related product pathways. Approximately 37% of the reaction products are formed in HCl(v=1,J) states with little rotational excitation. At low J states these products are sharply forward scattered, but become almost equally forward and backward scattered at higher J states. The remaining reaction products are formed in HCl(v=0,J) and have more rotational excitation. The HCl(v=0,J) products are predominantly back and side scattered. Measurements of the CH(3) products indicate production of a non-negligible amount of umbrella bend excited methyl radicals primarily in coincidence with the HCl(v=0,J) products. The data are consistent with a model in which the impact parameter governs the scattering dynamics.  相似文献   
5.
Experimentally measured resonance hyper-Raman (RHR) spectra spanning the S(1) ← S(0), S(2) ← S(0), and S(3) ← S(0) transitions in rhodamine 6G (R6G) have been recorded. These spectra are compared to the results of first-principles calculations of the RHR intensity that include both Franck-Condon (A-term) and non-Condon (B-term) scattering effects. Good agreement between the experimental and theoretical results is observed, demonstrating that first-principles calculations of hyper-Raman intensities are now possible for large molecules such as R6G. Such agreement indicates that RHR spectroscopy will now be a routine aid for probing multiphoton processes. This work further shows that optimization of molecular properties to enhance either A- or B-term scattering might yield molecules with significantly enhanced two-photon properties.  相似文献   
6.
Electrochemical reactors that electrolytically convert CO2 into higher-value chemicals and fuels often pass a concentrated hydroxide electrolyte across the cathode. This strongly alkaline medium converts the majority of CO2 into unreactive HCO3 and CO32− byproducts rather than into CO2 reduction reaction (CO2RR) products. The electrolysis of CO (instead of CO2) does not suffer from this undesirable reaction chemistry because CO does not react with OH. Moreover, CO can be more readily reduced into products containing two or more carbon atoms (i. e., C2+ products) compared to CO2. We demonstrate here that an electrocatalyst layer derived from copper phthalocyanine ( CuPc ) mediates this conversion effectively in a flow cell. This catalyst achieved a 25 % higher selectivity for acetate formation at 200 mA/cm2 than a known state-of-art oxide-derived Cu catalyst tested in the same flow cell. A gas diffusion electrode coated with CuPc electrolyzed CO into C2+ products at high rates of product formation (i. e., current densities ≥200 mA/cm2), and at high faradaic efficiencies for C2+ production (FEC2+; >70 % at 200 mA/cm2). While operando Raman spectroscopy did not reveal evidence of structural changes to the copper molecular complex, X-ray photoelectron spectroscopy suggests that the catalyst undergoes conversion to a metallic copper species during catalysis. Notwithstanding, the ligand environment about the metal still impacts catalysis, which we demonstrated through the study of a homologous CuPc bearing ethoxy substituents. These findings reveal new strategies for using metal complexes for the formation of carbon-neutral chemicals and fuels at industrially relevant conditions.  相似文献   
7.
The widespread application of laser desorption/ionization mass spectrometry (LDI-MS) highlights the need for a bright and multiplexable labeling platform. While ligand-capped Au nanoparticles (AuNPs) have emerged as a promising LDI-MS contrast agent, the predominant thiol ligands suffer from low ion yields and extensive fragmentation. In this work, we develop a N-heterocyclic carbene (NHC) ligand platform that enhances AuNP LDI-MS performance. NHC scaffolds are tuned to generate barcoded AuNPs which, when benchmarked against thiol-AuNPs, are bright mass tags and form unfragmented ions in high yield. To illustrate the transformative potential of NHC ligands, the mass tags were employed in three orthogonal applications: monitoring a bioconjugation reaction, performing multiplexed imaging, and storing and reading encoded information. These results demonstrate that NHC-nanoparticle systems are an ideal platform for LDI-MS and greatly broaden the scope of nanoparticle contrast agents.  相似文献   
8.
9.
The remarkable resilience of N-heterocyclic carbene (NHC) gold bonds has quickly made NHCs the ligand of choice when functionalizing gold surfaces. Despite rapid progress using deposition from free or CO2-protected NHCs, synthetic challenges hinder the functionalization of NHC surfaces with protic functional groups, such as alcohols and amines, particularly on larger nanoparticles. Here, we synthesize NHC-functionalized gold surfaces from gold(I) NHC complexes and aqueous nanoparticles without the need for additional reagents, enabling otherwise difficult functional groups to be appended to the carbene. The resilience of the NHC−Au bond allows for multi-step post-synthetic modification. Beginning with the nitro-NHC, we form an amine-NHC terminated surface, which further undergoes amide coupling with carboxylic acids. The simplicity of this approach, its compatibility with aqueous nanoparticle solutions, and its ability to yield protic functionality, greatly expands the potential of NHC-functionalized noble metal surfaces.  相似文献   
10.
Molecular chlorine, methane and helium are co-expanded into the extraction region of a Wiley-McLaren time-of-flight spectrometer. After preparing the first overtone of the antisymmetric stretch (ν3 = 2) with direct IR excitation, the reaction is initiated by photolysing Cl2 with 355 nm light to produce mono-energetic Cl atoms with a translational energy of 0.18 eV. The CD3 and DCl products are state-selectively detected via resonance enhanced multiphoton ionization (REMPI) and analysed with the core-extraction technique. Unusual structure in the 3pz CD3 REMPI spectrum suggests the presence of a previously unobserved transition, which we assign to the stretch-bend combination ( [image omitted]) band. The product correlated energy disposal and the scattering distributions are compared with the same quantities for the Cl + CH4(ν3 = 2) reaction and found to be similar, although subtle differences are observed. The results for the Cl + CD4(ν3 = 2) reaction support a localized chemistry model in which the Cl atom interacts with a single C-D oscillator and leaves the CD3 methyl radical as a spectator.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号