首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
用顺丁烯二酸酐 (MAH)对具有分子包结能力的 β 环糊精 (β CD)进行化学改性 ,合成出了丁烯二酸单酯化 β CD单体 (MAH β CD) .通过氧化还原自由基引发MAH β CD与N 异丙基丙烯酰胺 (NIPA)聚合 ,合成出含 β CD结构单元的新型水凝胶 .用核磁共振、红外光谱及元素分析对MAH β CD单体及共聚物的结构和组成进行了表征 .溶胀研究结果表明 ,该水凝胶具有较好的pH、温度及离子强度敏感性 ;并且水凝胶在较高羧基(—COOH)含量和弱碱环境中 ,仍能表现出明显的温敏性  相似文献   

2.
采用1,3-二环己基碳化二亚胺(DCC)为缩合剂,通过β环糊精与丙烯酸的酯化反应合成了不同取代度的丙烯酸β环糊精酯(βCD6A),以此为单体与丙烯酸通过氧化还原自由基引发聚合,合成出了不同交联密度和不同环糊精含量的新型水凝胶(AAβCD6A).溶胀实验表明,该类水凝胶均具有pH敏感性,溶胀动力学实验进一步对其机理进行了探讨.选择苯丁酸氮芥(CHL)作为模型药物,考察了不同pH下AAβCD6A水凝胶对药物释放行为的影响.结果表明,pH=6.8时药物释放率均大于pH=2.0时药物释放率,环糊精的存在表现出促释作用.  相似文献   

3.
利用缩醛化反应将醛基化 β 环糊精 (β CD)固载到聚乙烯醇 (PVA)大分子链上 ,合成出了聚乙烯醇固载 β 环糊精 (PVA β CD)的线性环糊精高分子 ,其最佳反应条件是反应时间 2h ,温度 70℃ ,β CD 6 CHO与PVA的质量比小于等于 4∶1.采用红外光谱及核磁共振表征了该聚合物的分子结构 .通过研究PVA β CD与模型药物喜树碱 (CPT)的包合作用 ,对不同环糊精固载量的PVA β CD膜在不同pH值下的药物释放机理进行了探讨 .结果表明 ,PVA β CD因包合增溶作用促进了水难溶性药物的释放 .  相似文献   

4.
用自由基共聚法合成了一系列 β -羟丙酯 ( β -HPAT)和乙烯基吡咯烷酮 (NVP)的共聚物及其水凝胶。发现共聚物的水溶液有敏锐的温敏行为 ,最低汇溶温度 (LCST)随NVP含量的增加而升高 ,随着反应单体总浓度的增加 ,相变敏锐性下降且LCST也随之下降。通过考察水凝胶的溶胀率 (SR) ,发现共聚凝胶在适当的单体浓度 ,交联剂浓度和较宽的单体浓度配比范围内 ,有较灵敏的温敏行为。  相似文献   

5.
陈延锋  伊敏 《高分子学报》2001,17(2):215-218
紫外光辐照 ,H2 O2 为光引发剂 ,N ,N′ 亚甲基双丙烯酰胺为交联剂合成了含甲基丙烯酸 N ,N 二甲氨基乙酯的水凝胶 .研究了水溶液中单体、光敏引发剂、交联剂浓度及光照时间对生成的水凝胶的凝胶含量和溶胀性能的影响 ,给出了最佳合成条件 .用该聚合法合成的聚甲基丙烯酸 N ,N 二甲氨基乙酯水凝胶不仅具有较好的透明性和适当的弹性 ,而且在 40℃和 pH =3时有明显的温度及 pH敏感性 .但离子强度对凝胶溶胀性能没有明显影响  相似文献   

6.
合成了含金刚烷基的甲基丙烯酸金刚烷酯(AdMA)疏水单体,并通过与N-异丙基丙烯酰胺(NIPAM)共聚,制备了温敏性的(P(NIPAM-co-AdMA))共聚物水凝胶.用傅里叶变换红外光谱仪(FTIR)表征了凝胶的化学结构,用环境扫描电镜(ESEM)对凝胶断层结构的形貌进行了观察,用DSC测试了凝胶的体积相转变温度(LCST),并研究了共聚水凝胶的溶胀性能.结果表明,共聚物水凝胶的LCST能够高效地通过改变疏水单体的含量来调节,在实验所考察的范围内,LCST随AdMA含量的增加而线性降低;疏水单体的含量对凝胶的孔洞结构和溶胀性能存在一最优值,在最优的单体配比下,水凝胶具有均匀规整的大孔结构和超快的响应速率.如疏水单体含量为3%(AdMA∶NIPAM=3%)的共聚物水凝胶具有如渔网般均匀的多孔结构,当发生去溶胀时,在5min内就可以失去92%的水,不到10min的时间就可以完全达到去溶胀平衡,水保留率在4%以下.  相似文献   

7.
通过光化学合成方法分别在高温(50℃)和室温(28℃)下实现了N,N-二甲基丙烯酰胺(DMAA)和N-异丙基丙烯酰胺(NIPAm)的交联共聚,制备了两种不同结构的P(DMAA-co-NIPAm)共聚物水凝胶.对两种温度下制备的P(DMAA-co-NIPAm)共聚物水凝胶的网络结构、溶胀与消溶胀速率和温度敏感性等方面进行了比较研究.结果发现,50℃下制备的P(DMAA-co-NIPAm)共聚物凝胶具有较为疏松的网络结构和相对较快的溶胀速率及温度响应特性.光化学合成方法较传统的热聚合制备方法具有简便、快捷的特点,合成过程仅需2 min.  相似文献   

8.
光交联法合成水凝胶的研究   总被引:3,自引:0,他引:3  
合成了一种新型光敏性功能单体N -肉桂酰氧甲基丙烯酰胺 (CMMAM)及其与丙烯酸 (AA)的共聚物(CMMAM -AA) ,通过光交联法进一步合成水凝胶 .测定了CMMAM和CMMAM -AA聚合物的红外光谱 ,测定了水凝胶的DSC并对它的溶胀性能进行了初步研究  相似文献   

9.
光交联法合成水凝胶的研究   总被引:1,自引:0,他引:1  
合成了一种新型光敏性功能单体N -肉桂酰氧甲基丙烯酰胺 (CMMAM)及其与丙烯酸 (AA)的共聚物(CMMAM -AA) ,通过光交联法进一步合成水凝胶 .测定了CMMAM和CMMAM -AA聚合物的红外光谱 ,测定了水凝胶的DSC并对它的溶胀性能进行了初步研究  相似文献   

10.
刘守信  张朝阳  房喻  王焕霞  陈奋强 《化学学报》2009,67(16):1910-1916
利用大分子单体技术, 采用自由基溶液聚合合成了温度/pH敏感性聚甲基丙烯酸-N,N-二甲氨基乙酯接枝聚N-异丙基丙烯酰胺[P(DMAEMA-g-NIPAM)]水凝胶. 用红外光谱及扫描电镜对凝胶的组成及形貌进行了表征. 凝胶的去溶胀和溶胀动力学研究表明, 所合成的凝胶具有温度和pH敏感性. 与传统的聚丙烯酸系水凝胶相比, P(DMAEMA-g- NIPAM)具有相反的pH敏感性; P(DMAEMA-g-NIPAM)凝胶在55 ℃时具有较快的去溶胀速率, 随着凝胶中接枝链PNIPAM量的增加, 凝胶的去溶胀速率加快.  相似文献   

11.
以N,N′-二乙基丙烯酰胺(DEA)为单体,偶氮二异丁腈(AIBN)为引发剂,分别采用疏水性的1,2-二乙烯苯(DVB)和水溶性的N,N′-亚甲基双丙烯酰胺(BIS)为交联剂制备了温度敏感水凝胶聚(N,N′-二乙基丙烯酰胺)(PDEA).制得的PDEA水凝胶的低临界溶解温度(LCST)在30 ℃附近,初步讨论了交联剂的用量和性质对水凝胶性能的影响.并对其在不同温度下达到溶胀平衡时的溶胀比,去溶胀动力学及干凝胶的再溶胀动力学过程进行了研究.  相似文献   

12.
研究了β-环糊精/环氧氯丙烷水凝胶的合成工艺条件,发现该水凝胶透明性好,其干胶具有溶胀速度快的且在-40-200℃范围内不存在玻璃化转变,用DSC对β-环糊精/环氧氯丙烷水凝胶的溶胀过程及水在聚合物网络中的存在状态进行了研究,结果表明,该聚合物在溶胀过程中水首先分布于β-环糊精的外围亲水空间依次形成非冻结结结合水,可阈结结合水及游离水、其后水分布于β-环糊精内腔空间,当达到溶胀平均后,β-环糊精的内外空间都分布有水。  相似文献   

13.
K-型卡拉胶/聚乙烯吡咯烷酮共混水凝胶的辐射合成   总被引:9,自引:3,他引:6  
采用辐射技术合成了K 型卡拉胶 (KC) /聚乙烯吡咯烷酮 (PVP)共混水凝胶 ,研究了天然高分子KC、单体N 乙烯基吡咯烷酮 (N VP)、交联剂二甲基丙烯酸十四甘醇酯 ( 1 4G) ,辐照剂量以及剂量率等对辐射合成的KC/PVP共混水凝胶性质的影响 .实验发现 ,KC与适当比例的N VP共混后在一定剂量范围内辐照可得到高强度、高溶胀行为的KC/PVP共混水凝胶 ,随着共混凝胶内KC含量的相对增加 ,凝胶强度及溶胀性的能均显著提高 ,但合成该共混凝胶的最佳剂量却相对提前 ;加入 1 4G后降低了KC/PVP共混凝胶辐射合成最佳剂量 ,同时使KC/PVP共混凝胶的强度进一步提高 ;剂量、剂量率对KC/PVP共混凝胶的性质亦有很大的影响 .分析表明 ,KC与N VP共混后 ,在较低剂量下KC的降解被抑制 ,从而获得一种由物理交联的KC和化学交联的PVP形成的互穿网络 (IPN)凝胶  相似文献   

14.
以辛酸亚锡为催化剂 ,通过星型聚乙二醇 (PEG)引发ε 己内酯 (CL)开环聚合 ,制备了PEG b PCL嵌段共聚物 ,进一步以丙烯酸酯封端 ,合成了 3种水溶性大分子单体 .以 2 ,2 二甲氧基 2 苯基苯乙酮为引发剂 ,在紫外光作用下 ,大分子单体在水中由于胶束的形成能够迅速聚合形成水凝胶 .利用1 H NMR、FTIR、DSC、TGA、ESEM、凝胶含量、溶胀比等分析测试手段对大分子单体及其形成的水凝胶进行了表征 .结果表明 ,干胶迅速吸水而达到溶胀平衡 ,水凝胶具有较大的溶胀比和高的水含量 ;随着PEG臂数的增加 ,干胶的熔融峰顶温度下降 ,凝胶的溶胀比减小 ;ESEM图片上清晰地表明水凝胶的网络结构  相似文献   

15.
P(AMPS-co-BMA)水凝胶的电场敏感性及电刺激响应机理   总被引:3,自引:0,他引:3  
以离子型单体2-丙烯酰胺-2-甲基丙磺酸(AMPS)及非离子型单体甲基丙烯酸丁酯为原料, 偶氮二异丁腈为引发剂, N,N′-亚甲基双丙烯酰胺为交联剂, N,N-二甲基甲酰胺为溶剂, 通过自由基聚合合成了一系列聚离子浓度不同的聚(2-丙烯酰胺-2-甲基丙磺酸-co-甲基丙烯酸丁酯)电场敏感性水凝胶. 研究了其在去离子水及NaCl溶液中的溶胀行为. 结果表明, 该水凝胶在去离子水中的平衡溶胀度在236.4~298.5之间, 其溶胀速率随着AMPS用量的增加而增加; 并且随着凝胶内部聚离子浓度的增加, 凝胶在NaCl溶液中的消溶胀速率及消溶胀度逐渐减小. 凝胶的电刺激响应性能研究结果表明, 在电场存在下, 凝胶在NaCl溶液中的溶胀行为与凝胶内部聚离子浓度和溶液中NaCl浓度的相对大小有关, 当凝胶内部聚离子浓度大于溶液中NaCl浓度时, 凝胶溶胀, 反之则凝胶消溶胀; 而且, 凝胶在电场作用下的偏转行为同样与凝胶内部聚离子浓度和溶液中NaCl浓度的相对大小有关, 当凝胶内部聚离子浓度大于溶液中NaCl浓度时, 偏向阴极, 反之则凝胶偏向阳极. 另外, 在电场存在下, 凝胶在NaCl溶液中的电偏转速度与环境温度密切相关.  相似文献   

16.
由N 乙烯基吡咯烷酮与丙烯酸 β 羟基丙酯共聚物 /聚 (丙烯酸 )所得的互穿网络水凝胶P(NVP co β HPA) /PAA具有温度及pH双重敏感特性 .在酸性条件下 ,由于P(NVP)与PAA间络合作用 ,随温度升高迅速退胀 ;在碱性条件下 ,凝胶的溶胀率远大于酸性条件下的溶胀率 ,且随温度的升高而逐渐增大  相似文献   

17.
以数均分子量为6000的聚乙二醇为引发剂,以辛酸亚锡为催化剂引发丙交酯开环,再用甲基丙烯酸酐进行封端生成大分子单体.然后将大分子单体和α-环糊精混合,分别用维生素C和硫酸亚铁与过硫酸铵组成的氧化还原引发剂引发聚合,得到了两种不同结构的超分子结构水凝胶.用1HNMR,FTIR,TGA和XRD等分析测试手段对大分子单体及形成的水凝胶进行了表征.流变仪测试结果表明,该水凝胶固化时间合适,并具有可注射性.  相似文献   

18.
采用γ辐射溶液聚合法合成了几种二甲基二烯丙基氯化铵 丙烯酸 (DADMAC AA)共聚凝胶 .实验结果表明单位体积溶液中二组分单体总摩尔数和丙烯酸 (AA)相对含量的增加使共聚凝胶力学强度明显增高 .在两种单体等摩尔比的情况下共聚体的凝胶含量随剂量增加而增加 ,且明显高于聚N ,N′ 二甲基二烯丙基氯化铵 (PolyDADMAC)凝胶 .体系中少量κ 卡拉胶 (KC)的加入可增强共聚凝胶韧性但对凝胶含量和强度影响甚微 .共聚凝胶溶胀性能测定结果表明DADMAC与AA摩尔比为 1∶2时凝胶溶胀比与体系pH值的关系呈现聚两性电解质性质 ,等电点pH值接近 4 5 .这种聚两性电解质性质在对铼Re(Ⅶ )离子浓集中也有所表现  相似文献   

19.
通过分子结构设计, 合成了疏水性单体4-乙酰基丙烯酰乙酸乙酯(AAEA), 并以该单体与丙烯酸(AA)进行自由基溶液共聚, 制备了P(AAEA-co-AA)新型温度敏感性水凝胶. AAEA的1H NMR及FT-IR分析表明, 该单体主要以烯醇式结构存在; P(AAEA-co-AA)的FT-IR分析发现, PAAEA与PAA之间存在较强烈的氢键作用, 使得AAEA烯醇异构体中的C—O伸缩振动吸收峰移向了低波数处. 对冷冻干燥后凝胶的电镜分析发现, 当AAEA用量较高时, 由于凝胶内部分子链段的疏水聚集, 各部分溶胀度以及溶胀速度不均一而使得凝胶表面粗糙不平. 采用DSC对凝胶的体积相转变进行了研究, 结果表明, 该水凝胶的体积相转变温度(VPTT)在48.2至61.8 ℃之间, 并且随着AAEA用量的减小, 凝胶的VPTT逐渐增加. 对该新型温度敏感性水凝胶在去离子水中的溶胀动力学研究发现, 当AAEA用量高于4.6 g时, 凝胶属于Fick凝胶; 反之凝胶则属于非Fick凝胶. 该水凝胶在去离子水中具有良好的温度敏感性, 当外界温度低于VPTT时, 凝胶能保持溶胀状态; 而当外界温度高于VPTT时, 凝胶的平衡溶胀度迅速下降, 表现为温度敏感性. 进一步研究发现, 凝胶组成不仅会影响凝胶的VPTT, 而且会影响凝胶温度敏感性的强弱.  相似文献   

20.
以N,N-二甲基丙烯酰胺(DMAA)及甲基丙烯酸甲酯(MMA)为单体,Irgacure 2959为光引发剂,N,N′-二甲基双丙烯酰胺(Bis)为交联剂,利用紫外光引发自由基聚合制备了聚N,N′-二甲基丙烯酰胺(PDMAA)及P(DMAA-co-MMA)水凝胶,并通过加入少量表面改性后的纳米SiO2对该水凝胶进行改性,制得了P(DMAA-co-MMA)/纳米SiO2复合水凝胶,用FT-IR和SEM对产物进行了表征,同时研究该复合凝胶的溶胀动力学、消溶胀动力学、pH值响应性、离子强度等.该方法简便、快捷,大大缩短了聚合时间,合成过程仅需2-3 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号