首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of novel (N−)acene-based cyclooligomers is reported. Glaser-Hay coupling of the bisethynylated monomers results in cyclodimers and cyclotrimers that are separable by column and gel-permeation chromatographies. For the diazatetracene, the use of sec-butyl-silylethynyl groups is necessary to achieve solubility. Diazatetracene-based cyclodimers and cyclotrimers were used as semiconductors in thin-film transistors. Although their optoelectronic properties are quite similar, their electron mobilities in proof-of-concept thin-film transistors differ by an order of magnitude.  相似文献   

2.
Di CA  Li J  Yu G  Xiao Y  Guo Y  Liu Y  Qian X  Zhu D 《Organic letters》2008,10(14):3025-3028
Two trifluoromethyltriphenodioxazines were efficiently synthesized as active materials for n-type organic field-effect transistors, and their optical and electrochemical properties were characterized. Air-stable and high-performance thin film transistors based on the two compounds were fabricated.  相似文献   

3.
A novel solution-processed, compositionally and structurally stable dual-layer gate dielectric composed of a UV-cured poly(4-vinyl phenol)-co-poly(methyl methacrylate) bottom layer and a thermally cross-linked poly(methyl silsesquioxane) top layer for organic thin-film transistors is described. This gate dielectric design, coupled with compatible solution-processable semiconductor and conductor materials, has enabled fabrication of all solution-processed, high-performance organic thin-film transistors on flexible substrates. High field-effect mobility and current on/off ratio, together with other desirable transistor properties, are demonstrated.  相似文献   

4.
Unsymmetrical heteroacenes, 11-phenylbenzofuro[3,2-b]carbazole (Ph-BFC) and its alkoxylated derivatives, were readily synthesized by palladium-catalyzed double N-arylation of arylamines. They characteristically form antiparallel cofacial pi-stacking arrangements, which may result from their unsymmetrical structures. Their physical properties show their potential for application as active layers in organic field-effect transistors.  相似文献   

5.
In the past decade, tremendous progress has been made in organic field-effect transistors (OFETs). Their real applications require further development of device performance. OFETs consist of organic semiconductors, dielectric layers, and electrodes. Organic semiconductors play a key role in determining the device characteristics. The properties of the organic semiconductors, such as molecular structure and packing, as well as molecular energy levels, can be properly controlled by molecular design. Therefore, we designed and synthesized a series of organic molecules. The synthesized organic semiconductors exhibit excellent field-effect properties due to strong intermolecular interactions and proper molecular energy levels. Meanwhile, the influence of the device fabrication process, organic semiconductor/dielectric layer interface, and organic layer/electrode contact on the device performance was investigated. A deep understanding of these factors is helpful to improve field-effect properties. Furthermore, single-crystal field-effect transistors are highlighted because the single-crystal-based FETs can provide an accurate conducting mechanism of organic semiconductors and higher device performance as compared with thin film FETs.  相似文献   

6.
Black HT  Liu S  Ashby VS 《Organic letters》2011,13(24):6492-6495
Two fused thienoacene compounds with two-dimensional ring connectivity were synthesized, and their semiconducting properties were characterized. Both compounds have a crystal structure comprised of herringbone arrays of tight π-π stacks. Strong π-π interactions lead to self-assembly into well-defined crystalline thin films from the vapor phase for both compounds. Field effect transistors were fabricated, affording identical hole mobilities of 3.0 × 10(-3) cm(2)/(V s) and I(on/off) > 10(5).  相似文献   

7.
Perylene-3,4,9,10-tetracarboxylic acid diimides (perylene diimides, PDIs) have been used as industrial pigments for many years. More recently, new applications for PDI derivatives have emerged in areas including organic photovoltaic devices and field-effect transistors. This Perspective discusses the synthesis and physical properties of PDI derivatives and their applications in organic electronics.  相似文献   

8.
有机单晶场效应晶体管的研究对于探索电子的本质特性具有十分重要的意义。近几年来,不管是在制备技术还是在器件性能的研究方面,有机单晶场效应晶体管均取得了很大的进步,并由此引起了社会的广泛关注,成为场效应晶体管领域的一个重要研究方向。本文主要介绍了有机单晶的生长方法、有机场效应器件的各种制备技术、器件的迁移率及其影响因素,并对有机单晶场效应晶体管的发展前景和面临的一些问题作了简要的讨论。  相似文献   

9.
Manganese pnictides MnP, MnAs, and MnSb are ferromagnetic semimetals and have some unique properties, namely, high Curie points, considerable magnetic anisotropy, and giant magnetocaloric effect. Experimental and theoretical studies showed that these compounds can enter a superconducting state under high external pressures. Manganese pnictides are widely used in design of hybrid structures, such as spin diodes and transistors, in combination with semiconductors. The survey focuses on the design and properties of such the structures.  相似文献   

10.
有机单晶场效应晶体管的研究对于探索电子的本质特性具有十分重要的意义。近几年来,不管是在制备技术还是在器件性能的研究方面,有机单晶场效应晶体管均取得了很大的进步,并由此引起了社会的广泛关注,成为场效应晶体管领域的一个重要研究方向。本文主要介绍了有机单晶的生长方法、有机场效应器件的各种制备技术、器件的迁移率及其影响因素,并对有机单晶场效应晶体管的发展前景和面临的一些问题作了简要的讨论。  相似文献   

11.
We report the synthesis and characterization of a novel donor-acceptor semiconducting polymer bearing naphthobisthiadiazole (NTz), a doubly benzothiadiazole (BTz)-fused ring, and its applications to organic field-effect transistors and bulk heterojunction solar cells. With NTz's highly π-extended structure and strong electron affinity, the NTz-based polymer (PNTz4T) affords a smaller bandgap and a deeper HOMO level than the BTz-based polymer (PBTz4T). PNTz4T exhibits not only high field-effect mobilities of ~0.56 cm(2)/(V s) but also high photovoltaic properties with power conversion efficiencies of ~6.3%, both of which are significantly high compared to those for PBTz4T. This is most likely due to the more suitable electronic properties and, importantly, the more highly ordered structure of PNTz4T in the thin film than that of PBTz4T, which might originate in the different symmetry between the cores. NTz, with centrosymmetry, can lead to a more linear backbone in the present polymer system than BTz with axisymmetry, which might be favorable for better molecular ordering. These results demonstrate great promise for using NTz as a bulding unit for high-performance semiconducting polymers for both transistors and solar cells.  相似文献   

12.
Conductive and emissive: organic transistors made from a simple styrylanthracene derivative have high charge mobility and high luminescence quantum yields. These properties are attributed to the lack of singlet fission, and challenge the idea that the efficient π interactions required for high mobility always lead to quenching of emission. The transistors emit blue electroluminescence and are stable during operation and storage.  相似文献   

13.
Di CA  Yu G  Liu Y  Xu X  Wei D  Song Y  Sun Y  Wang Y  Zhu D  Liu J  Liu X  Wu D 《Journal of the American Chemical Society》2006,128(51):16418-16419
The characteristics of organic field-effect transistors (OFETs) were dramatically improved by chemically modifying the surface of the bottom-contact Ag or Cu source-drain (D-S) electrodes with a simple solution method. The contact resistance and energetic mismatch typically observed with Ag D-S electrodes in pentacene bottom-contact OFETs can be properly eliminated when modified by the Ag-TCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane). The pentacene transistors with low-cost Ag-TCNQ-modified Ag bottom-contact electrodes exhibit outstanding electrical properties, which are comparable with that of the Au top-contact devices. It thus provides a novel way toward high-performance low-cost bottom-contact OFETs.  相似文献   

14.
Sheng  Wanle  Zheng  Yu-Qing  Wu  Qinghua  Chen  Kangkang  Li  Mao  Jiao  Lijuan  Hao  Erhong  Wang  Jie-Yu  Pei  Jian 《中国科学:化学(英文版)》2020,63(9):1240-1245
Azadipyrromethene derived polycyclic aromatic complexes(HBPs) containing thirteen fused rings have been synthesized,which show highly selective intense absorption in the near infrared spectrum(NIR) region with high photo-and thermo-stability.The periphery alkoxy and alkyl substituents greatly affect their molecular packing structures in thin films and their thin film transistor performances. With the simple changes of the alkyl substituents, the packing structures changed from discrete-grain with H-aggregation type absorption to lamellar packing with J-aggregation type absorption, and the semiconducting properties were modulated from p-type to interesting ambipolar-type in solution-processed organic field effect transistors(OFETs) with hole and electron mobilities reaching to 0.42 and 0.17 cm~2 V~(-1) s~(-1), respectively.  相似文献   

15.
An alkylated semiconducting polymer comprising alternating bithiophene‐[all]‐S,S‐dioxide and aromatic monothiophene units in the polymer backbone was synthesized with the intent of modifying the energy gap and lowest unoccupied molecular orbital for use as a stable n‐type semiconductor. Films spun from this semiconducting polymer were characterized utilizing X‐ray scattering, near edge X‐ray absorption fine structure spectroscopy, ultraviolet photoelectron spectroscopy, and thin‐film field effect transistors to determine how oxidation of the thiophene ring systems impacts the structural and electronic properties of the polymer. The thiophene‐S,S‐dioxide polymers have lower optical and electrical band gaps than corresponding thiophene polymers. X‐ray scattering results indicate that the polymers are well ordered with the π–π stacking distances increased by 0.4 Å relative to analogous thiophene polymers. The electrical stability of these polymers is poor in transistors with a drop in the field effect mobility by approximately one order of magnitude upon addition of just 5% of the thiophene‐S,S‐dioxide unit in a copolymer with thiophene. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

16.
In this study, we propose the fabrication of sol-gel composite-based flexible and transparent synaptic transistors on polyimide (PI) substrates. Because a low thermal budget process is essential for the implementation of high-performance synaptic transistors on flexible PI substrates, microwave annealing (MWA) as a heat treatment process suitable for thermally vulnerable substrates was employed and compared to conventional thermal annealing (CTA). In addition, a solution-processed wide-bandgap amorphous In-Ga-Zn (2:1:1) oxide (a-IGZO) channel, an organic polymer chitosan electrolyte-based electric double layer (EDL), and a high-k Ta2O5 thin-film dielectric layer were applied to achieve high flexibility and transparency. The essential synaptic plasticity of the flexible and transparent synaptic transistors fabricated with the MWA process was demonstrated by single spike, paired-pulse facilitation, multi-spike facilitation excitatory post-synaptic current (EPSC), and three-cycle evaluation of potentiation and depression behaviors. Furthermore, we verified the mechanical robustness of the fabricated device through repeated bending tests and demonstrated that the electrical properties were stably maintained. As a result, the proposed sol-gel composite-based synaptic transistors are expected to serve as transparent and flexible intelligent electronic devices capable of stable neural operation.  相似文献   

17.
Nitrogen doping is a promising way to modulate the electrical properties of graphene to realize graphene-based electronics and promise fascinating properties and applications.Herein,we report a method to noncovalently assembly titanium(Ⅳ) bis(ammoniumlactato) dihydroxide(Ti complex) on nitrogen-doped graphene to create a reliable hybrids which can be used as a reversible chemical induced switching.As the adsorption and desorption of Ti complex in sequential treatments,the conductance of the nitrogen-doped graphene transistors was finely modulated.Control experiments with pristine graphene clearly demonstrated the important effort of the nitrogen in this chemical sensor.Under optimized conditions,nitrogen-doped graphene transistors open up new ways to develop multifunctional devices with high sensitivity.  相似文献   

18.
We present a floating-potential dielectrophoresis method used for the first time to achieve controlled alignment of an individual semiconducting or metallic single-walled carbon nanotube (SWCNT) between two electrical contacts with high repeatability. This result is significantly different from previous reports, in which bundles of SWCNTs were aligned between electrode arrays by a conventional dielectrophoresis process where the results were only collected from the control electrode regions. In this study, our alignment focus is not only on the regions of the control electrodes but also on those of the floating electrodes. Our results indicate that bundles of carbon nanotubes along with impurities were first moved into the region between two control electrodes while individual nanotubes without impurities were straightened and aligned between two floating electrodes. The measurements for the back-gated nanotube transistors made by this method displayed an on-off ratio and transconductance of 10(5) and 0.3 microS, respectively. These output and transport properties are comparable with those of nanotube transistors made by other methods. Most importantly, the findings in this study show an effective way to separate individual nanotubes from bundles and impurities and advance the processes for site-selective fabrication of single-SWCNT transistors and related electrical devices.  相似文献   

19.
Alkanethiol Self-Assembly Monolayers (SAMs) were investigated by means of BiModal Atomic Force Microscopy. Morphological and mechanical properties show a parabolic trend vs. the chain length n, which is ascribed to the disorder at the SAMs/Au interface. This explains the trend of charge injection across SAMs in organic field effect transistors.  相似文献   

20.
Three novel diketopyrrolopyrrole (DPP) based small molecules have been synthesized and characterized in terms of their chemical-physical, electrochemical and electrical properties. All the molecules consist of a central DPP electron acceptor core symmetrically functionalized with donor bi-thienyl moieties and flanked in the terminal positions by three different auxiliary electron-acceptor groups. This kind of molecular structure, characterized by an alternation of electron acceptor and donor groups, was purposely designed to provide a significant absorption at the longer wavelengths of the visible spectrum: when analysed as thin films, in fact, the dyes absorb well over 800 nm and exhibit a narrow optical bandgap down to 1.28 eV. A detailed DFT analysis provides useful information on the electronic structure of the dyes and on the features of the main optical transitions. Organic field-effect transistors (OFETs) have been fabricated by depositing the DPP dyes as active layers from solution: the different end-functionalization of the dyes had an effect on the charge-transport properties with two of the dyes acting as n-type semiconductors (electron mobility up to 4.4 ⋅ 10−2 cm2/V ⋅ s) and the third one as a p-type semiconductor (hole mobility up to 2.3 ⋅ 10−3 cm2/V ⋅ s). Interestingly, well-balanced ambipolar transistors were achieved by blending the most performant n-type and p-type dyes with hole and electron mobility in the order of 10−3 cm2/V ⋅ s  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号