首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zero-dimensional (0D) lead-free perovskites have unique structures and optoelectronic properties. Undoped and Sb-doped all inorganic, lead-free, 0D perovskite single crystals A2InCl5(H2O) (A=Rb, Cs) are presented that exhibit greatly enhanced yellow emission. To study the effect of coordination H2O, Sb-doped A3InCl6 (A=Rb, Cs) are also synthesized and further studied. The photoluminescence (PL) color changes from yellow to green emission. Interestingly, the photoluminescence quantum yield (PLQY) realizes a great boost from <2 % to 85–95 % through doping Sb3+. We further explore the effect of Sb3+ dopants and the origin of bright emission by ultrafast transient absorption techniques. Furthermore, Sb-doped 0D rubidium indium chloride perovskites show excellent stability. These findings not only provide a way to design a set of new high-performance 0D lead-free perovskites, but also reveal the relationship between structure and PL properties.  相似文献   

2.
Lead‐free zero‐dimensional (0D) organic‐inorganic metal halide perovskites have recently attracted increasing attention for their excellent photoluminescence properties and chemical stability. Here, we report the synthesis and characterization of an air‐stable 0D mixed metal halide perovskite (C8NH12)4Bi0.57Sb0.43Br7?H2O, in which individual [BiBr6]3? and [SbBr6]3? octahedral units are completely isolated and surrounded by the large organic cation C8H12N+. Upon photoexcitation, the bulk crystals exhibit ultra‐broadband emission ranging from 400 to 850 nm, which originates from both free excitons and self‐trapped excitons. This is the first example of 0D perovskites with broadband emission spanning the entire visible spectrum. In addition, (C8NH12)4Bi0.57Sb0.43Br7?H2O exhibits excellent humidity and light stability. These findings present a new direction towards the design of environmentally‐friendly, high‐performance 0D perovskite light emitters.  相似文献   

3.
The lead‐free halide perovskite A3Sb2Br9 is utilized as a photocatalyst for the first time for C(sp3)?H bond activation. A3Sb2Br9 nanoparticles (A3Sb2Br9 NPs) with different ratios of Cs and CH3NH3 (MA) show different photocatalytic activities for toluene oxidation and the photocatalytic performance is enhanced when increasing the amount of Cs. The octahedron distortion caused by A‐site cations can change the electronic properties of X‐site ions and further affect the electron transfer from toluene molecules to Br sites. After the regulation of A‐site cations, the photocatalytic activity is higher with A3Sb2Br9 NPs than that with classic photocatalysts (TiO2, WO3, and CdS). The main active species involved in photocatalytic oxidation of toluene are photogenerated holes (h+) and superoxide anions (.O2?). The octahedron distortion by A‐site cations affecting photocatalytic activity remains unique and is also a step forward for understanding more about halide‐perovskite‐based photocatalysis. The relationship between octahedron distortion and photocatalysis can also guide the design of new photocatalytic systems involving other halide perovskites.  相似文献   

4.
Lead‐free halide perovskite nanocrystals (NCs) have drawn wide attention for solving the problem of lead perovskites toxicity and instability. Herein, we synthesize the direct band gap double perovskites undoped and Ag‐doped Cs2NaInCl6 NCs by variable temperature hot injection. The Cs2NaInCl6 NCs have little photoluminescence because of dark self‐trapped excitons (STEs). The dark STEs can be converted into bright STEs by doping with Ag+ to produce a bright yellow emission, with the highest photoluminescence quantum efficiency of 31.1 %. The dark STEs has been directly detected experimentally by ultrafast transient absorption (TA) techniques. The dynamics mechanism is further studied. In addition, the Ag‐doped NCs show better stability than the undoped ones. This result provides a new way to enhance the optical properties of lead‐free perovskites NCs for high‐performance light emitters.  相似文献   

5.
Lead‐free zero‐dimensional (0D) organic‐inorganic metal halide perovskites have recently attracted increasing attention for their excellent photoluminescence properties and chemical stability. Here, we report the synthesis and characterization of an air‐stable 0D mixed metal halide perovskite (C8NH12)4Bi0.57Sb0.43Br7?H2O, in which individual [BiBr6]3? and [SbBr6]3? octahedral units are completely isolated and surrounded by the large organic cation C8H12N+. Upon photoexcitation, the bulk crystals exhibit ultra‐broadband emission ranging from 400 to 850 nm, which originates from both free excitons and self‐trapped excitons. This is the first example of 0D perovskites with broadband emission spanning the entire visible spectrum. In addition, (C8NH12)4Bi0.57Sb0.43Br7?H2O exhibits excellent humidity and light stability. These findings present a new direction towards the design of environmentally‐friendly, high‐performance 0D perovskite light emitters.  相似文献   

6.
Recently, low‐dimensional organic‐inorganic hybrid metal halide perovskites acting as single‐component white‐light emitting materials have attracted extensive attention, but most studies concentrate on hybrid lead perovskites. Herein, we present two isomorphic zero‐dimensional (0D) hybrid cadmium perovskites, (HMEDA)CdX4 (HMEDA=hexamethylenediamine, X=Cl ( 1 ), Br ( 2 )), which contain isolated [CdX4]2? anions separated by [HMEDA]2+ cations. Under UV light excitation, both compounds display broadband bluish white‐light emission (515 nm for 1 and 445 nm for 2 ) covering the entire visible light spectrum with sufficient photophysical stabilities. Remarkably, compound 2 shows a high color rendering index (CRI) of 83 enabling it as a promising candidate for single‐component WLED applications. Based on the temperature‐dependent, powder‐dependent and time‐resolved PL measurements as well as other detailed studies, the broadband light emissions are attributed to self‐trapped excitons stemming from the strong electron‐phonon coupling.  相似文献   

7.
Low‐dimensional luminescent lead halide perovskites have attracted tremendous attention for their fascinating optoelectronic properties, while the toxicity of lead is still considered a drawback. Herein, we report a novel lead‐free zero‐dimensional (0D) indium‐based perovskite (Cs2InBr5?H2O) single crystal that is red‐luminescent with a high photoluminescence quantum yield (PLQY) of 33 %. Experimental and computational studies reveal that the strong PL emission might originate from self‐trapping excitons (STEs) that result from an excited‐state structural deformation. More importantly, the in situ transformation between hydrated Cs2InBr5?H2O and the dehydrated form is accompanied with a switchable dual emission, which enables it to act as a PL water‐sensor in humidity detection or the detection of traces of water in organic solvents.  相似文献   

8.
Low‐dimensional ns2‐metal halide compounds have received immense attention for applications in solid‐state lighting, optical thermometry and thermography, and scintillation. However, these are based primarily on the combination of organic cations with toxic Pb2+ or unstable Sn2+, and a stable inorganic luminescent material has yet to be found. Here, the zero‐dimensional Rb7Sb3Cl16 phase, comprised of isolated [SbCl6]3? octahedra and edge‐sharing [Sb2Cl10]4? dimers, shows room‐temperature photoluminescence (RT PL) centered at 560 nm with a quantum yield of 3.8±0.2 % at 296 K (99.4 % at 77 K). The temperature‐dependent PL lifetime rivals that of previous low‐dimensional materials with a specific temperature sensitivity above 0.06 K?1 at RT, making it an excellent thermometric material. Utilizing both DFT and chemical substitution with Bi3+ in the Rb7Bi3?3xSb3xCl16 (x≤1) family, we present the edge‐shared [Sb2Cl10]4? dimer as a design principle for Sb‐based luminescent materials.  相似文献   

9.
Published studies of layered (2D) (100)‐oriented hybrid lead‐bromide perovskites evidence a correlation between increased inter‐octahedral (Pb‐Br‐Pb) distortions and the appearance of broadband white light emission. However, the impact of distortions within their constituent [PbBr6]4? octahedra has yet to be assessed. Herein, we report two new (100)‐oriented 2D Pb‐Br perovskites, whose structures display unusually high intra‐octahedral distortions, whilst retaining minimal inter‐octahedral distortions. Using a combination of temperature‐dependent, power‐dependent and time‐resolved photoluminescence spectroscopic measurements, we show that increased intra‐octahedral distortion induces exciton localization processes and leads to formation of multiple photoinduced emissive colour centres. Ultimately, this leads to highly Stokes‐shifted, ultrabroad white light emission at room temperature.  相似文献   

10.
The double perovskite family, A2MIMIIIX6, is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH3NH3PbI3. Given the generally large indirect band gap within most known double perovskites, band‐gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs2AgBiBr6 as host, band‐gap engineering through alloying of InIII/SbIII has been demonstrated in the current work. Cs2Ag(Bi1−x Mx )Br6 (M=In, Sb) accommodates up to 75 % InIII with increased band gap, and up to 37.5 % SbIII with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs2Ag(Bi0.625Sb0.375)Br6. Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three‐metal systems are also assessed.  相似文献   

11.
The double perovskite family, A2MIMIIIX6, is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH3NH3PbI3. Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs2AgBiBr6 as host, band-gap engineering through alloying of InIII/SbIII has been demonstrated in the current work. Cs2Ag(Bi1−xMx)Br6 (M=In, Sb) accommodates up to 75 % InIII with increased band gap, and up to 37.5 % SbIII with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs2Ag(Bi0.625Sb0.375)Br6. Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed.  相似文献   

12.
Two‐dimensional (2D) lead‐free halide perovskites have generated enormous perception in the field of optoelectronics due to their fascinating optical properties. However, an in‐depth understanding on their shape‐controlled charge‐carrier recombination dynamics is still lacking, which could be resolved by exploring the photoluminescence (PL) blinking behaviour at the single‐particle level. Herein, we demonstrate, for the first time, the synthesis of nanocrystals (NCs) and 2D nanosheets (NSs) of layered mixed halide, Cs3Bi2I6Cl3, by solution‐based method. We applied fluorescence microscopy and super‐resolution optical imaging at single‐particle level to investigate their morphology‐dependent PL properties. Narrow emission line widths and passivation of non‐radiative defects were evidenced for 2D layered nanostructures, whereas the activation of shallow trap states was recognized at 77 K. Interestingly, individual NCs were found to display temporal intermittency (blinking) in PL emission. On the other hand, NS showed temporal PL intensity fluctuations within localized domains of the crystal. In addition, super‐resolution optical image of the NS from localization‐based method showed spatial inhomogeneity of the PL intensity within perovskite crystal.  相似文献   

13.
Inorganic, lead-free metal halides are widely sought after following the rise of the halide perovskites as outstanding optoelectronic materials, due to their enhanced stability and reduced toxicity. Herein, we report on the solvothermal synthesis of Rb7Sb3Br16, which exhibits a 0D structure comprised of [SbBr6]3− octahedra and edge-sharing bioctahedra [Sb2Br10]4− dimers that order into layers along the c-axis. This all-inorganic material is air-stable and exhibits weak orange photoluminescence (PL) at room temperature. Low-temperature PL and PL excitation (PLE) measurements reveal the presence of two distinct emission bands that originate from these structural units, with the high-energy emission quenching as temperature rises beyond 150 K. We are also able to obtain Rb7Bi3Br16 and Rb7Bi3I16 which both crystallize in orthorhombic symmetry, with Rb7Bi3Br16 presenting weak low-temperature luminescence while Rb7Bi3I16 is non-luminescent. This work expands the library of emissive inorganic metal halides and provides further evidence for the efficacy of low-dimensional Sb−X luminescent centers based on octahedral and edge-sharing [Sb2X10]4− dimers.  相似文献   

14.
All-inorganic zero-dimensional (0D) metal halides have recently received increasing attention due to their excellent photoluminescence (PL) performance and high stability. Herein, we present the successful doping of copper(I) into 0D Cs2ZnBr4. The incorporating of Cu+ cations enables the originally weakly luminescent Cs2ZnBr4 to exhibit an efficient blue emission centered at around 465 nm, with a high photoluminescence quantum yield (PLQY) of 65.3 %. Detailed spectral characterizations, including ultrafast transient absorption (TA) techniques, were carried out to investigate the effect of Cu+ dopants and the origin of blue emission in Cs2ZnBr4:Cu. To further study the role of the A-site cation and halogen, A2ZnCl4:Cu (A=Cs, Rb) were also synthesized and found to generate intense sky-blue emission (PLQY≈73.1 %). This work represents an effective strategy for the development of environmentally friendly, low-cost and high-efficiency blue-emitting 0D all-inorganic metal halides.  相似文献   

15.
Methylammonium lead halide (MAPbX3) perovskites exhibit exceptional carrier transport properties. But their commercial deployment as solar absorbers is currently limited by their intrinsic instability in the presence of humidity and their lead content. Guided by our theoretical predictions, we explored the potential of methylammonium bismuth iodide (MBI) as a solar absorber through detailed materials characterization. We synthesized phase‐pure MBI by solution and vapor processing. In contrast to MAPbX3, MBI is air stable, forming a surface layer that does not increase the recombination rate. We found that MBI luminesces at room temperature, with the vapor‐processed films exhibiting superior photoluminescence (PL) decay times that are promising for photovoltaic applications. The thermodynamic, electronic, and structural features of MBI that are amenable to these properties are also present in other hybrid ternary bismuth halide compounds. Through MBI, we demonstrate a lead‐free and stable alternative to MAPbX3 that has a similar electronic structure and nanosecond lifetimes.  相似文献   

16.
Two‐dimensional (2D) halide perovskites have attracted significant attention due to their compositional flexibility and electronic diversity. Understanding the structure–property relationships in 2D double perovskites is essential for their development for optoelectronic applications. In this work, we observed the emergence of pressure‐induced emission (PIE) at 2.5 GPa with a broad emission band and large Stokes shift from initially nonfluorescent (BA)4AgBiBr8 (BA=CH3(CH2)3NH3+). The emission intensity increased significantly upon further compression up to 8.2 GPa. Moreover, the band gap narrowed from the starting 2.61 eV to 2.19 eV at 25.0 GPa accompanied by a color change from light yellow to dark yellow. Analysis of combined in situ high‐pressure photoluminescence, absorption, and angle‐dispersive X‐ray diffraction data indicates that the observed PIE can be attributed to the emission from self‐trapped excitons. This coincides with [AgBr6]5? and [BiBr6]3? inter‐octahedral tilting which cause a structural phase transition. High‐pressure study on (BA)4AgBiBr8 sheds light on the relationship between the structure and optical properties that may improve the material's potential applications in the fields of pressure sensing, information storage and trademark security.  相似文献   

17.
The reduced dimension perovskite including 2D perovskites are one of the most promising strategies to stabilize lead halide perovskite. A mixed‐cation 2D perovskite based on a steric phenyltrimethylammonium (PTA) cation is presented. The PTA‐MA mixed‐cation 2D perovskite of PTAMAPbI4 can be formed on the surface of MAPbI3 (PTAI‐MAPbI3) by controllable PTAI intercalation by either spin coating or soaking. The PTAMAPbI4 capping layer can not only passivate PTAI‐MAPbI3 perovskite but also act as MA+ locker to inhibit MAI extraction and significantly enhance the stability. The highly stable PTAI‐MAPbI3 based perovskite solar cells exhibit a reproducible photovoltaic performance with a champion PCE of 21.16 %. Such unencapsulated devices retain 93 % of initial efficiency after 500 h continuous illumination. This steric mixed‐cation 2D perovskite as MA+ locker to stabilize the MAPbI3 is a promising strategy to design stable and high‐performance hybrid lead halide perovskites.  相似文献   

18.
The spatial localization of charge carriers to promote the formation of bound excitons and concomitantly enhance radiative recombination has long been a goal for luminescent semiconductors. Zero‐dimensional materials structurally impose carrier localization and result in the formation of localized Frenkel excitons. Now the fully inorganic, perovskite‐derived zero‐dimensional SnII material Cs4SnBr6 is presented that exhibits room‐temperature broad‐band photoluminescence centered at 540 nm with a quantum yield (QY) of 15±5 %. A series of analogous compositions following the general formula Cs4?xAxSn(Br1?yIy)6 (A=Rb, K; x≤1, y≤1) can be prepared. The emission of these materials ranges from 500 nm to 620 nm with the possibility to compositionally tune the Stokes shift and the self‐trapped exciton emission bands.  相似文献   

19.
Bi3+ and lanthanide ions have been codoped in metal oxides as optical sensitizers and emitters. But such codoping is not known in typical semiconductors such as Si, GaAs, and CdSe. Metal halide perovskite with coordination number 6 provides an opportunity to codope Bi3+ and lanthanide ions. Codoping of Bi3+ and Ln3+ (Ln=Er and Yb) in Cs2AgInCl6 double perovskite is presented. Bi3+‐Er3+ codoped Cs2AgInCl6 shows Er3+ f‐electron emission at 1540 nm (suitable for low‐loss optical communication). Bi3+ codoping decreases the excitation (absorption) energy, such that the samples can be excited with ca. 370 nm light. At that excitation, Bi3+‐Er3+ codoped Cs2AgInCl6 shows ca. 45 times higher emission intensity compared to the Er3+ doped Cs2AgInCl6. Similar results are also observed in Bi3+‐Yb3+ codoped sample emitting at 994 nm. A combination of temperature‐dependent (5.7 K to 423 K) photoluminescence and calculations is used to understand the optical sensitization and emission processes.  相似文献   

20.
Organic p‐type semiconductors with tunable structures offer great opportunities for hybrid perovskite solar cells (PVSCs). We report herein two dithieno[3,2‐b:2′,3′‐d]pyrrole (DTP) cored molecular semiconductors prepared through π‐conjugation extension and an N‐alkylation strategy. The as‐prepared conjugated molecules exhibit a highest occupied molecular orbital (HOMO) level of ?4.82 eV and a hole mobility up to 2.16×10?4 cm2 V?1 s?1. Together with excellent film‐forming and over 99 % photoluminescence quenching efficiency on perovskite, the DTP based semiconductors work efficiently as hole‐transporting materials (HTMs) for n‐i‐p structured PVSCs. Their dopant‐free MA0.7FA0.3PbI2.85Br0.15 devices exhibit a power conversion efficiency over 20 %, representing one of the highest values for un‐doped molecular HTMs based PVSCs. This work demonstrates the great potential of using a DTP core in designing efficient semiconductors for dopant‐free PVSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号