首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
微流控芯片中形成的微液滴粒径均一、可控,与传统的连续流体系相比,具有能实现试剂的快速混合、通量更高等优点.本文介绍了微流控芯片中由微通道控制的微液滴的形成、分裂、合并、混合、分选和捕获等微液滴操纵技术,以及微液滴技术在纳米粒子、聚合物微粒的合成、纳米粒子自组装、蛋白质结晶研究和DNA、细胞分析等领域的研究进展.  相似文献   

2.
基于芯片正交光路检测模式,搭建了一套小型的微流控芯片流式细胞仪.以532 nm小型半导体激光器作为激发光源,激光束被透镜聚焦于芯片通道中央.采用光电二极管检测芯片通道内流动细胞的前向散射光信号,采用小型光电倍增管检测荧光信号,整套仪器体积为19 cm×15 cm×25 cm(长×宽×高),具有结构简单、体积小、价格低廉等特点.荧光检测系统对四甲基罗丹明异硫氰酸的检出限为4.4×10-8 mol/L,采用6 μm荧光微球作为模型样品考察了仪器的分析性能,同时初步实现了细胞样品的分析.  相似文献   

3.
微流控细胞芯片LED诱导荧光检测微系统   总被引:1,自引:0,他引:1  
基于微流控细胞芯片分析技术和微机电系统(MEMS)加工技术, 设计制作了阵列式微流控细胞检测芯片, 采用自组装的顶窗型光电倍增管(PMT)和信号采集电路采集芯片微管道内流动细胞的荧光信号, 构建了一种针对低浓度细胞悬浮液的微流控细胞芯片发光二极管(LED)诱导荧光的快速检测微系统, 实现了对低浓度(≤40 Cell/mL)荧光标记的HepG2肝癌细胞悬浮液样本的定量计数和测试, 而且在血液细胞共存的条件下, 仍可以有效地对血液中少量HepG2肝癌细胞进行荧光计数和测试. 整个系统结构简单, 操作方便且检测灵敏度较高.  相似文献   

4.
通过Stber溶胶-凝胶法制备了掺杂荧光染料的二氧化硅微粒.透射电子显微镜表征其直径分别为80、160和500nm.在荧光显微镜下观察HepG2细胞对不同尺寸微粒的吞噬并采用流式细胞仪研究了微粒进入细胞的途径.检测了二氧化硅微粒的细胞毒性,通过划痕修复实验、细胞黏附和Transwell细胞迁移实验研究了吞噬二氧化硅微粒对细胞黏附和迁移能力的影响.实验结果表明,HepG2细胞主要通过网格蛋白介导的胞吞途径对二氧化硅微粒进行吞噬,4℃培养和叠氮化钠处理都会抑制胞吞的效率.在浓度为0~200μg/mL范围内,直径为80nm的二氧化硅微粒会对细胞造成浓度依赖的细胞毒性,而直径为160nm和500nm的二氧化硅微粒没有对细胞存活率造成明显的影响.但是,吞噬三种尺寸的微粒后,细胞的黏附和迁移能力都有较明显的下降,推测原因可能是由于胞吞过程对细胞骨架造成了损伤.  相似文献   

5.
提出了纳升级进样量的微流控芯片流动注射气体扩散分离光度检测系统. 制作三层结构微流控芯片, 在玻璃片上加工微反应通道, 用聚二甲基硅氧烷[Poly(dimethylsiloxane), PDMS]加工气体渗透膜和具有接收气体微通道的底片, 实现了生成气体的化学反应、气-液分离和检测在同一微芯片上的集成化. 采用缝管阵列纳升流动注射进样系统连续进样, 用吸光度法测定NH+4以验证系统性能. 结果表明, 该系统对NH+4的检出限为140 μmol/L(3σ), 峰高精度为3.7%(n=9). 在进样时间12 s、注入载流48 s和每次进样消耗200 nL试样条件下, 系统分析通量可达60样/h. 若加大样品量到800 nL, 使接收溶液停流1 min, 该系统对NH+4的检出限可达到35 μmol/L(3σ), 但分析通量降低到20样/h.  相似文献   

6.
微流控芯片已被用于进行各种细胞分析的研究.最近,方肇伦等[1]用十字型微流控芯片压力进样,激光诱导荧光检测进行了人单个血红细胞内谷胱甘肽的测定.用双T型微流控芯片电化学检测方法对小麦愈伤组织中抗坏血酸(AA)的单细胞分析进行了研究.  相似文献   

7.
微流控芯片用于流式细胞术的基础研究   总被引:5,自引:0,他引:5  
自行设计并加工了玻璃微流控芯片,并将其与流式细胞术相结合,采用羟丙基甲基纤维素(HPMC)的磷酸盐溶液为缓冲体系和鞘液,解决了微粒在微芯片中流动的若干问题,使其状态可以得到更有效的控制.采用自行组装的激光诱导荧光装置并结合动电聚焦技术,实现了对荧光微球的计数,并可通过荧光倒置显微镜实时观察到微通道内微球的实际流动情况.方法简单,操作方便,并且具有仪器体积小、试剂及样品用量少和分析速度快等优点.  相似文献   

8.
微通道反应器在合成反应中的应用   总被引:4,自引:0,他引:4  
微流控学(microfluidics)是在微米级结构中操控纳升至皮升体积流体的技术与科学,是近10年来迅速崛起的新交叉学科.流体在微流控芯片微米级通道中,由于尺度效应导致了许多不同于宏观体系的特点,例如分子间扩散距离短、微通道的比表面积大、传热和传质速度快等,促进了微流控芯片在有机合成反应中的发展.本文总结了微通道反应器的特点、微通道反应器中常用的流体驱动技术和微通道中流体的混合技术.通过一系列在微流控芯片中进行的有机合成反应,包括液-液均相反应、催化反应、相转移反应和异常激烈的有机合成反应等,进一步说明了微通道反应器同时具有微量和连续流动的优点.微通道反应器的发展不但在合成路线的优化方面有重要意义,而且有助于相关化学工业过程的改进.  相似文献   

9.
表面增强拉曼光谱(SERS)因极高的检测灵敏度且能够提供丰富的分子结构信息,可实现原位、实时监测等优点而成为广受关注的痕量分析工具.本文发展了基于微流控和SERS的联用技术,实现了微有机合成反应的现场监测.以磁性核壳纳米粒子Fe3O4@Ag为SERS基底,通过外加磁场调控富集实现连续的SERS检测;结合微流控反应器在有机合成中反应物用量少、效率高、易于实现在线检测和高通量筛选的优势,实现了α-苯乙醇的微量合成反应以及实时SERS监测.研究表明,Fe3O4@Ag核壳纳米粒子具备在微流控反应通道中的磁富集功能和SERS连续检测的性能.通过改变微流控通道中反应物的流速可调控反应速度,在固定时间内获得不同浓度的反应物,利用差谱技术消除反应物光谱的干扰,获得了产物α-苯乙醇的特征SERS光谱.结果表明微流控技术与SERS联用可发展成为微量有机反应的监测手段,在有机化学反应高通量筛选中具有潜在应用价值.  相似文献   

10.
蒋艳  徐溢  王人杰  苏喜  董春燕 《化学进展》2015,27(9):1240-1250
微流控芯片分析技术可以集成不同的生物化学分析功能单元,广泛应用于生化分析领域,在细菌检测方面具有传统检测方法不可比拟的优越性。近来年,在微流控细菌芯片中引入高荧光强度、低背景荧光干扰和高选择性的纳米荧光探针为实现细菌高效检测分析提供了新的研究途径和技术手段。本文通过对细菌检测中的几类新型荧光标记探针的介绍和比较,分析其荧光效应和应用特点,尤其是在细菌检测中的应用特性,重点综述了新型高效的纳米荧光探针与微流控细菌芯片分析方法和技术结合,实现微尺度空间和荧光检测模式下的细菌高效检测。  相似文献   

11.
VanDersarl JJ  Xu AM  Melosh NA 《Lab on a chip》2011,11(18):3057-3063
Controlled chemical delivery in microfluidic cell culture devices often relies on slowly evolving diffusive gradients, as the spatial and temporal control provided by fluid flow results in significant cell-perturbation. In this paper we introduce a microfluidic device architecture that allows for rapid spatial and temporal soluble signal delivery over large cell culture areas without fluid flow over the cells. In these devices the cell culture well is divided from a microfluidic channel located directly underneath the chamber by a nanoporous membrane. This configuration requires chemical signals in the microchannel to only diffuse through the thin membrane into large cell culture area, rather than diffuse in from the sides. The spatial chemical pattern within the microfluidic channel was rapidly transferred to the cell culture area with good fidelity through diffusion. The cellular temporal response to a step-function signal showed that dye reached the cell culture surface within 45 s, and achieved a static concentration in under 6 min. Chemical pulses of less than one minute were possible by temporally alternating the signal within the microfluidic channel, enabling rapid flow-free chemical microenvironment control for large cell culture areas.  相似文献   

12.
N Hu  J Yang  S Qian  X Zhang  SW Joo  X Zheng 《Electrophoresis》2012,33(13):1980-1986
A novel cell electrofusion microfluidic chip using discrete coplanar vertical sidewall electrodes has been designed, fabricated, and tested. The device contains a serpentine-shaped microchannel with 22 500 pairs of vertical sidewall microelectrodes patterned on two opposing vertical sidewalls of the microchannel. The adjacent microelectrodes on each sidewall are separated by coplanar SiO(2) -Polysilicon-SiO(2) /silicon. This design of coplanar discrete vertical sidewall electrodes eliminates the "dead area" present in previous designs using continuous three-dimensional (3D) protruding sidewall electrodes, and generates uniform electric field along the height of the microchannel, leading to a lower voltage required for cell fusion compared to designs using 2D thin-film electrodes. This device is tested to fuse NIH3T3 cells under a low voltage (~9 V). Almost 100% cells are aligned to the edge of the discrete microelectrodes, and cell-cell pairing efficiency reaches 70%. The electrofusion efficiency is above 40% of the total cells loaded into the device, which is much higher than traditional fusion methods and existing microfluidic devices using continuous 3D protruding sidewall microelectrodes.  相似文献   

13.
设计并验证了一种用于细胞三维培养的集成微柱阵列的微流控芯片.芯片由一片聚二甲基硅氧烷(PDMS)沟道片和一片玻璃盖片组成, 在PDMS沟道片上集成了一个由两排微柱阵列围成的细胞培养室和两条用于输送培养基的侧沟道.微柱间距直接影响了芯片的使用性能, 是整个芯片设计的关键.基于数值模拟和实验验证, 本研究对微柱间距进行了优化设计.优化后的微流控芯片可以很好地实现细胞与细胞外基质模拟材料混合液的稳定注入、培养基中营养物质向培养室内的快速扩散和细胞代谢物的及时排出.在芯片上进行了神经干细胞的三维培养, 证明了芯片上构建的细胞体外微环境的稳定性.  相似文献   

14.
This paper presents a microfluidic chip for highly efficient separation of red blood cells (RBCs) from whole blood on the basis of their native magnetic properties. The glass chip was fabricated by photolithography and thermal bonding. It consisted of one inlet and three outlets, and a nickel wire of 69-microm diameter was positioned in the center of a separation channel with 149-microm top width and 73-microm depth by two parallel ridges (about 10 microm high). The two ridges were formed simultaneously during the wet etching of the channels. The nickel wire for generating the magnetic gradient inside the separation channel was introduced from the side of the chip through a guide channel. The external magnetic field was applied by a permanent magnet of 0.3 T placed by the side of the chip and parallel to the main separation channel. The RBCs were separated continuously from the 1:40 (v/v) diluted blood sample at a flow rate in the range 0.12-0.92 microL/min (9-74 mm/min) with the chip, and up to 93.7% of the RBCs were collected in the middle outlet under a flow rate of 0.23 microL/min. The cell sedimentation was alleviated by adjusting the specific density of the supporting media with bovine serum albumin. Quantum dot labeling was introduced for visual fluorescence tracking of the separation process. The uneven distribution phenomenon of the blood cells around the nickel wire was reported and discussed.  相似文献   

15.
A precise understanding of individual cellular processes is essential to meet the expectations of most advanced cell biology. Therefore single-cell analysis is considered to be one of possible approach to overcome any misleading of cell characteristics by averaging large groups of cells in bulk conditions. In the present work, we modified a newly designed microchip for single-cell analysis and regulated the cell-adhesive area inside a cell-chamber of the microfluidic system. By using surface-modification techniques involving a silanization compound, a photo-labile linker and the 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer were covalently bonded on the surface of a microchannel. The MPC polymer was utilized as a non-biofouling compound for inhibiting non-specific binding of the biological samples inside the microchannel, and was selectively removed by a photochemical reaction that controlled the cell attachment. To achieve the desired single-macrophage patterning and culture in the cell-chamber of the microchannel, the cell density and flow rate of the culture medium were optimized. We found that a cell density of 2.0 × 10(6) cells/ml was the appropriate condition to introduce a single cell in each cell chamber. Furthermore, the macrophage was cultured in a small size of the cell chamber in a safe way for 5 h at a flow rate of 0.2 μl/min under the medium condition. This strategy can be a powerful tool for broadening new possibilities in studies of individual cellular processes in a dynamic microfluidic device.  相似文献   

16.
设计并制作了一种集多孔流分离(Multi-orifice flow fractionation,MOFF)技术与磁捕获技术于一体的用于特异性分离和捕获合成样本中肝癌细胞HepG2的多功能微流控细胞芯片.此芯片由玻璃基片和PDMS微通道盖片组成,PDMS盖片上含有3条进样通道、MOFF分离区和六边形腔体的细胞富集检测区.其中,MOFF分离区总长20 mm,由80组长度为0.18 mm、深度为50μm、收缩区域宽度为0.06 mm、扩张区域宽度为0.20 mm的半菱形收缩/扩张重复单元组成,每组收缩/扩张重复单元间的夹角为103.0°.实验以肝癌细胞HepG2-血细胞混悬液为样本;根据磁珠表面修饰c-Met抗体能与肝癌细胞HepG2特异性结合的原理,通过表面羧基化的磁珠、EDC(1 mg/mL)、NHS(1 mg/mL)和c-Met抗体制备了浓度为50μg/mL的免疫磁珠(Anti-MNCs)悬浮液.在样本流速为50μL/min条件下,利用外加磁场实现了血细胞合成样本中微量肝癌细胞HepG2的有效捕获;采用微波加热法以柠檬酸、硫脲为原料制备了用于荧光标记HepG2的碳量子点,在芯片上实现了血液中肝癌细胞HepG2的原位荧光可视化观测.对芯片检测区捕获到的HepG2进行了显微计数分析,对500μL血细胞(107 cell/mL)中含10个HepG2细胞的合成样本,捕获效率达到88.5%±6.7%(n=20).结果表明,所设计的多模式多功能的微流控芯片具有良好的肿瘤细胞分离和检测功能.  相似文献   

17.
A palmtop-sized microfluidic cell culture system is presented. The system consists of a microfluidic device and a miniaturized infusion pump that possesses a reservoir of culture medium, an electrical control circuit, and an internal battery. The footprint of the system was downsized to 87 × 57 mm, which is, to the best of our knowledge, the smallest integrated cell culture system. Immortalized human microvascular endothelial cells (HMEC-1) and human umbilical vein endothelial cells (HUVEC) were cultured in the system. HMEC-1 in the system proliferated at the same speed as cells in a microchannel perfused by a syringe pump and cells in a culture flask. HUVEC in the system oriented along the direction of the fluid flow. Claudin-5, a tight junction protein, was localized along the peripheries of the HUVEC. We expect that the present system is applicable to various cell types as a stand-alone and easy-to-use system for microfluidic bioanalysis.  相似文献   

18.
Kim C  Chung S  Kim YE  Lee KS  Lee SH  Oh KW  Kang JY 《Lab on a chip》2011,11(2):246-252
We present a microfluidic device generating three-dimensional (3D) coaxial flow by the addition of a simple hillock to produce an alginate core-shell microcapsule for the efficient formation of a cell spheroid. A hillock tapered at downstream of the two-dimensional focusing channel enables outside flow to enclose the core flow. The aqueous solution in the core flow was focused and surrounded by 1.8% alginate solution to be solidified as a shell. The double-layered coaxial flow (aqueous phase) was broken up into a droplet by the shear flow of oleic acid (oil phase) containing calcium chloride for the polymerization of the alginate shell. The droplet generated from the laminar coaxial flow maintained a double-layer structure and gelation of the alginate solution made a core-shell microcapsule. The shell-thickness of the microcapsule was adjusted from 8-21 μm by the variation of two aqueous flow rates. The inner shape of the shell was almost spherical when the ratio of the water-glycol mixture in the core flow exceeded 20%. The microcapsule was used to form a spheroid of embryonic carcinoma cells (embryoid body; EB) by injecting a cell suspension into the core flow. The cells inside the microcapsule aggregated into an EB within 2 days and the EB formation rate was more than 80% with strong compaction. The microcapsule formed single spherical EBs without small satellite clusters or a bumpy shape as observed in solid microbeads. The microfluidic chip for encapsulation of cells could generate a number of EBs with high rate of EB formation when compared with the conventional hanging drop method. The core-shell microcapsule generated by 3D focusing in the microchannel was effective in forming large number of spherical cell clusters and the encapsulation of cells in the microcapsule is expected to be useful in the transplantation of islet cells or cancer stem cell enrichment.  相似文献   

19.
Li CW  Yang J  Yang M 《Lab on a chip》2006,6(7):921-929
The capability of lab-on-a-chip technologies in controlling cell transportation, generating concentration gradients, and monitoring cellular responses offers an opportunity to integrate dose-dependent cell-based bioassays on a chip. In this study, we have developed microfluidic modules featured with channel components and sandbag structures for positioning biological cells within the microchip. We have demonstrated that by geometric modulation of the microchannel architectures, it is possible to immobilize individual cells at desired locations with controllable numbers, to generate defined concentration gradients at various channel lengths, and to improve the efficiency and reproducibility in data acquisition. The microfluidic module was used to exercise a series of cell-based assays, including the measurement of kinetics and dynamics of intracellular enzymatic activities, the analysis of cellular response under the stimulation of two chemicals with defined concentration profiles, and the study of laser irradiation effect on cellular uptake of photosensitizers. The results demonstrated the capabilities of the microfluidic module for simultaneously conducting multiple sets of dose-dependent, cell-based bioassays, and for quantitatively comparing responses of individual cells under various stimulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号