首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
关磊  张力嫱  张宇航  张娜  王莹 《合成化学》2018,26(5):383-388
泡沫石墨烯是一种新型的碳基化工材料,具有独特的三维连通网络结构和优异的力学、热学、电学和化学稳定性能。本文综述了三维多孔泡沫石墨烯的制备与应用研究进展,主要介绍其水热法和化学气相沉淀制备法以及其作为催化材料、检测材料及电极材料的应用研究现状,并探讨了该领域亟待解决的重要问题和未来发展前景。  相似文献   

2.
石墨烯是具有二维晶体结构的碳纳米材料,其具有优异的导电性、透明性和极强的力学性能,可广泛应用于纳米电子器件、复合材料等领域,制备大面积、高质量的石墨烯成为了近年来重要的研究课题。本文介绍了制备石墨烯的化学方法,包括氧化还原法、外延生长法、化学气相沉积法、有机合成法、溶剂热法。本文对各方法的研究状况进行了详细的综述,分析了各方法的优缺点,重点介绍了氧化还原法还原手段对石墨烯结构和性能的影响。氧化还原法制备的石墨烯质量稳定,具有广阔的应用前景。  相似文献   

3.
通过简单的水热和气相沉积法合成了碳包覆磷酸亚铁锂/石墨烯复合材料,通过XRD,SEM,TEM等对其形貌进行了表征,并将其用作锂离子电池正极材料进行电化学性能表征,结果表明:碳包覆磷酸亚铁锂/石墨烯复合材料即使在10C的倍率下仍有115mAh·g~(-1)的容量,同时在10C循环300次,容量保持率为82%.其优异的倍率和循环性能归因于沉积碳、石墨烯以及磷酸亚铁锂之间层层叠加的独特三维导电结构.  相似文献   

4.
掺氮石墨烯研究   总被引:1,自引:0,他引:1  
陈旭  何大平  木士春 《化学进展》2013,(8):1292-1301
本文简述了掺氮石墨烯的优异特性,并对掺氮石墨烯的合成方法、表征技术及应用进行了评述。其中,掺氮石墨烯的合成方法主要包括化学气相沉积法、氨源热解、氮等离子放电法、电弧放电、氨电热反应法、溶剂热法和含氮前驱体转换法等。掺氮石墨烯的表征技术主要包括XPS、Raman、TEM、SEM和AFM等测试分析技术。介绍了掺氮石墨烯在新能源材料领域的最新应用,特别是作为锂离子电池、锂空电池电极、超级电容器以及燃料电池氧还原催化剂等关键材料的应用。最后,对掺氮石墨烯研究过程中可能存在的一些科学问题进行了简评。  相似文献   

5.
石墨烯及其复合材料具有优异的物理和化学性能,在电子、能源、催化、医药以及生物传感等领域应用潜能巨大,因此探究高质量、高产量和规模化的制备方法对石墨烯基复合材料未来的开发和应用至关重要.电化学法是一种有望实现绿色规模化制备石墨烯及其复合材料的方法,本文作者综述了国内外电化学制备石墨烯及其复合材料的主要方法:阳极氧化、阴极还原、电化学还原、离子液体功能化、电沉积、电聚合等,并对其反应原理和主要影响因素进行了详细的分析和介绍,最后对其应用前景进行了深度的展望.  相似文献   

6.
石墨烯(Gr)由于其独特的单原子层二维结构及优异的性能,在材料、电子、化学、能源、生物医药等众多领域具有广阔的应用前景,引起了众多学者的研究兴趣。如何高产量获得高质量的Gr对其未来的开发和应用至关重要。微波法是制备Gr的重要方法之一,具有绿色、高效、简便快捷等特点。本文综述了近几年微波法制备Gr、掺杂Gr和Gr基纳米复合材料的研究进展以及后者在锂离子电池负极材料方面的应用,并对其发展方向进行了展望。  相似文献   

7.
石墨烯是一种单原子层厚度的石墨材料,具有独特的二维结构和优异的电学、力学以及热学性能。同时它也是一种具有良好应用前景的锂离子电池电极材料。电极材料的微观结构对其性能有很大影响,利用石墨烯获得具有特殊形貌和微观结构的电极材料,能有效改善材料的各项电化学性能。本文综述了石墨烯及其复合材料在锂离子电池中的应用研究进展。在负极复合材料中,石墨烯不仅可以缓冲材料在充放电过程中的体积效应,还可以形成导电网络提升复合材料的导电性能,提高材料的倍率性能和循环寿命。通过优化复合材料的微观结构,例如夹层结构或石墨烯片层包覆结构,可进一步提高材料的电化学性能。在正极复合材料中,石墨烯形成的连续三维导电网络可有效提高复合材料的电子及离子传输能力。此外,相比于传统导电添加剂,石墨烯导电剂的优势在于能用较少的添加量,达到更加优异的电化学性能。最后对石墨烯复合材料的研究前景进行了展望。  相似文献   

8.
氮掺杂石墨烯的制备及其在化学储能中的研究进展   总被引:1,自引:0,他引:1  
石墨烯独特的二维空间结构使其具有优异的导电性能、力学性能以及超大的比表面积,被认为是颇具潜力的新型储能材料,是目前储能研究的热点之一。 但是石墨烯易团聚、表面光滑且呈惰性而不利于与其它材料的复合,导致其应用受到限制。 石墨烯掺氮可改变其电子结构,增加表面的活性位,从而提高其应用于储能器件时的电化学性能。 本文综述了近几年氮掺杂石墨烯的制备方法以及其在超级电容器、锂离子电池、锂空电池以及锂硫电池等化学储能领域中的应用,指出了目前氮掺杂石墨烯在制备和储能应用中关注的核心问题,并对氮掺杂石墨烯的发展前景进行了展望。  相似文献   

9.
刘杰  曾渊  张俊  张海军  刘江昊 《化学进展》2019,31(5):667-680
石墨烯具有单层碳原子组成的六方晶系晶体结构及独特的电学、化学、力学和热学性质。然而,由于石墨烯片层之间较强的π-π键和范德华力,导致易团聚或堆积,使其比表面积大幅减小,严重损害其性能。解决上述问题的最有效方法之一是构建具有多孔结构的三维石墨烯基材料,不仅保留了石墨烯优秀的导电性能和力学性能等本征特性,而且获得密度低、比表面积大、孔隙率高等结构优点,进而满足吸附剂、催化剂载体、生物传感器及电池与超级电容器电极材料等先进功能材料领域的应用需要。因此,开发三维石墨烯基材料的先进制备方法成为本领域研究的热点方向。本文综述了三维石墨烯基材料的现有制备方法,包括自组装法(水热还原法、化学还原法及冷冻干燥法)、模板法(胶体模板法、模板辅助化学气相沉积法及模板辅助水热还原法)和3D打印法(直写成型法、喷墨打印法、熔融沉积成型法、光固化成型法、选区激光烧结法及选区激光熔融法),总结了上述方法的优点及当前存在的主要问题,并且对三维石墨烯基材料制备技术的发展方向进行了展望。  相似文献   

10.
杨金龙 《物理化学学报》2019,35(10):1043-1044
<正>石墨烯自发现以来,因其非常优异的电学、热学、光学和力学等性能,在高端电子、能源存储、复合材料等领域有着广阔的应用前景~1。为了解决石墨烯的宏量制备和应用问题,自2009年以来,化学气相沉积(Chemical Vapor Deposition,CVD)方法逐渐成为制备高品质石墨烯薄膜的最有效手段之  相似文献   

11.
石墨烯是一种具有蜂窝状结构的二维纳米碳材料,具有高的比表面积、优异的导电/热性和理想的机械强度,因而被广泛用作聚合物基复合材料的增强填料。将二维石墨烯片构筑成三维石墨烯,既能充分发挥二维石墨烯片的性质,又能具备三维材料的特性。聚合物填充三维石墨烯制备的实心三维石墨烯-聚合物复合材料(Three-Dimensional Graphene-Polymer Composites,3DGPCs),可实现石墨烯在基体中的均匀分散,制备具有优异力学性能的导电、导热复合材料。以石墨烯三维网络为骨架制备的多孔3DGPCs具有高孔隙率、大比表面积和高电子传输能力等特性,可广泛应用于能量存储、环境保护、传感、电磁屏蔽和油污清理等领域。本文综述了3DGPCs的制备方法,并评述了制备3DGPCs所面临的挑战及发展前景。  相似文献   

12.
石墨烯/纳米银复合材料由于两种纳米材料产生的协同效应,使其具有多种优异的性能,从而在许多领域表现出巨大的应用潜能.以石墨烯/纳米银复合材料为综述对象,详细的介绍了它的制备方法,包括微波辐射法、液相合成法、热还原法、化学还原法、电沉积法和电子束辐射法等,以及在电化学、生物检测、抑菌抗菌、催化剂和环境治理方面的应用,并对其今后的研究方向和发展前景进行了展望.  相似文献   

13.
设计和构筑有效的三维导电网络结构对于优化储能电极材料的性能具有重要意义.石墨烯独特二维结构所具有的超高电荷传导、极大的表面负载空间和可形成三维孔(层)隙骨架结构等特性为制备多样化的复合电极材料提供了基础.本文介绍了近年来基于石墨烯的三维网络结构复合电极材料的构筑及其在电化学储能(如锂离子电池、锂硫电池)应用中的研究进展,结合本实验室的研究工作,着重介绍了石墨烯基复合电极材料结构设计的科学原理,讨论了几种石墨烯复合结构,并对未来石墨烯复合结构体系的构筑及其应用作了展望.  相似文献   

14.
石墨烯气凝胶一般是由石墨烯片层经过湿法化学组装或气相化学生长获得的一种具有连通多孔网络结构的石墨烯三维宏观体材料,表现出极高的比表面积、良好的导电性以及优异的机械性能等,在电化学储能、吸附、催化以及传感等领域有着极为重要的应用。本文从石墨烯气凝胶的结构设计与组装策略出发,综述了近年来石墨烯纳米结构单元在石墨烯气凝胶材料(氧化石墨烯、还原氧化石墨烯、化学气相沉积(CVD)石墨烯、以及复合气凝胶等)中的组装行为,并对石墨烯气凝胶目前的现状及今后发展方向做了简要评述。  相似文献   

15.
石墨烯是一种具有优异物理和化学性质的新型二维碳纳米材料,大规模低成本制备高品质石墨烯的方法是其能够得到广泛实际应用的重要前提. 电化学方法可以快捷、绿色无污染、批量制备高质量的石墨烯及其复合材料. 本综述在对石墨烯各种制备方法进行简要比较之后,对近年来石墨烯、石墨烯/无机纳米复合材料、石墨烯/聚合物复合材料以及类石墨烯材料的电化学法制备进展进行介绍并作了展望.  相似文献   

16.
刘小波  寇宗魁  木士春 《化学进展》2015,27(11):1566-1577
多孔石墨烯是指在二维基面上具有纳米级孔隙的碳材料,是近年来石墨烯缺陷功能化的研究热点。多孔石墨烯不仅保留了石墨烯优良的性质,而且相比惰性的石墨烯表面,孔的存在促进了物质运输效率的提高,特别是原子级别的孔可以起到筛分不同尺寸的离子、分子的作用。更重要的是,孔的引入还有效地打开了石墨烯的能带隙,促进了石墨烯在电子器件领域的应用。本文阐述了多孔石墨烯的一些基本性质和特性,并对其理论研究、制备方法和应用的研究进展进行了评述。其中,多孔石墨烯的制备方法主要包括光刻法、催化刻蚀法、化学气相沉积法、湿法刻蚀、碳热还原法、溶剂热法和自由基攻击法。多孔石墨烯优异的特性使其在能源储存与转换材料(锂离子电池、超级电容器、燃料电池等)、DNA分子检测、化学传感器、场效应晶体管、分子筛和海水淡化等领域具有非常广阔的应用前景。  相似文献   

17.
二维功能材料的制备方法常见的有以下几种:机械剥离或液相剥离具有面间弱相互作用、面内强共价键合作用的层状材料生成单层或少数层的二维材料;化学合成法;LangmuirBlodgett单分子膜技术法;层层自组装法;化学气相沉积法;分子束外延法和原子层沉积技术法。这些材料及其有机-高分子衍生物具有独特的结构特征和优异的性质,在场效应晶体管、光调制器、锁模和Q开关激光、光限幅、信息和能源存储、射频器件、化学传感器等领域具有重要的潜在应用价值。近年来,除了众所周知的石墨烯外,其他诸如类石墨烯的无机纳米材料(六方氮化硼、过渡金属卤化物、石墨化氮化碳、层状金属氧化物等)、二维聚合物、金属-有机框架、钙钛矿、黑磷等二维材料也被广泛研究或探索。开发或探索更多二维材料应用的关键是设计和制备新颖的二维材料及其有机-高分子衍生物。在不久的将来,兼具规模经济和功能行为的二维材料化学的突破将极大地驱动新型二维材料应用领域的拓展。本文综述了二维材料的基本概念、研究进展、亟待解决的关键问题和未来的发展趋势。  相似文献   

18.
依据硅橡胶优异的热稳定性,有望应用于航天航空领域,但由于其自身的力学性能较差限制了它的应用。本文综述了力学性能、电性能和热稳定性优异的石墨烯改性硅橡胶的应用研究。介绍了石墨烯改性硅橡胶复合材料的四种制备方法——乳液共混法、溶液共混法、熔融共混法和机械共混法,重点综述了机械共混法制备石墨烯改性硅橡胶复合材料,比较并分析了石墨烯改性硅橡胶复合材料性能影响因素及其研究现状,发现国内外研究石墨烯改性硅橡胶主要用于硅橡胶的电性能研究,最后,对石墨烯改性硅橡胶复合材料的应用前景进行了展望。  相似文献   

19.
近年来,石墨烯因其优异的电学和光学等特性,越来越受到人们的广泛关注。研究人员应用多种方法来合成石墨烯并且探讨其潜在的应用价值。本文首先简要介绍了石墨烯的结构及其基本的物理性质,并简单回顾了石墨烯的合成方法和表征手段。在此基础上,讨论了石墨烯/银复合薄膜在透明导电膜中的应用,并详细介绍了我们在该领域的研究成果。用化学气相沉积法(CVD)和多羟基法分别制备了双层石墨烯及银纳米线,成功合成了石墨烯/银复合薄膜,结果表明复合薄膜的方块电阻可降低至26 Ω·□-1,展示了其在光电器件上广泛的应用前景。  相似文献   

20.
石墨烯自2004年发现以来,由于其独一无二的优异性迅速成为科学家们的研究热点.由于石墨烯具有极其优异的电学、力学和热学等性能,因此被广泛应用于高性能聚合物基复合材料的制备.众所周知,纳米填料在聚合物中的分散状态以及与基体间的界面作用是构筑高性能聚合物纳米复合材料的关键因素.由于石墨烯极易团聚,难以通过传统的熔融共混法制备均匀分散的石墨烯增强-聚烯烃纳米复合材料.另一方面,聚烯烃通常需要在较高温度下才能溶于部分有毒溶剂(如:三氯苯和二甲苯等),因此溶液共混法也不适用于聚烯烃-石墨烯纳米复合材料的制备.有鉴于此,本文开发了一种共沉积法制备石墨烯/二氯化镁负载钛系齐格勒-纳塔催化剂的路线.通过原位聚合直接制备出石墨烯均匀分散的聚烯烃/石墨烯纳米复合材料.考察了石墨烯的加入量对催化剂形态及其催化乙烯聚合行为的影响.当石墨烯加入量较低时,多个石墨烯片被包裹于较大的催化剂粒子中.随着石墨烯加入量的增加,催化剂趋向于在石墨烯表面聚集.继续增加石墨烯量将导致石墨烯包裹催化剂粒子,降低过渡金属钛的负载效率.通过三乙基铝活化后,所制备的催化剂具有非常高的乙烯催化活性,所生成的聚乙烯/石墨烯纳米复合材料复制了催化剂的片状结构.同时,通过对所制备的聚乙烯/石墨烯纳米复合材料进行电子显微镜和X射线衍射分析可知,石墨烯均匀分散于聚乙烯基体中,并且没有任何团聚现象发生.该复合材料的热重分析表明,仅加入非常少量的石墨烯就可以使其具有比纯聚乙烯更高的热稳定性,当石墨烯加入量为0.66 wt%时,其5 wt%热分解温度较纯聚乙烯升高了54°C.同时,所制备聚乙烯/石墨烯纳米复合材料具有更优异的机械性能.因此,本研究提供了一个简单高效的高性能聚烯烃/石墨烯纳米复合材料的制备方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号