首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
通过原位直接缩聚反应,制备了刚性棒状聚对羟基苯甲酸酯和聚对苯二甲酸丁二醇酯-聚四亚甲基醚多嵌段共聚物和微相复合物,复合物可溶于氯仿等溶剂,可以浇铸成膜,本文研究了PHB含量和聚合过程中,基体聚合物溶液浓度对微相复合物形态以及力学性能影响,同共混法相比,原位缩聚法可得到分散更均匀,力学性能更优良的微相复合物。  相似文献   

2.
王勇  吴大诚 《应用化学》1994,11(5):95-97
采用差示扫描量热仪和热台偏光显微镜研究了对羟基苯甲酸(PHB)/聚对苯二甲酸丁二酯(PBT)共聚酯的热转变行为和液晶性。结果表明,PHB/PBT共聚酯呈现多重相转变特征,这与共聚酯中存在不同程度的PBT富微区和PHB富微区有关;当PHB链节含量在20%~80%范围时,共聚酯均呈现向列型液晶特征.  相似文献   

3.
DSC和FTIR测试表明,结晶/非晶共混体系聚(β-羟基丁酸酯)(PHB)/聚双酚A羟基醚(PBHE)是部分相容的.熔融结晶退火可以大大提高共混物的结晶度,增加其相容性,75/25组分PHB相结晶度最大,50/50组分(020)、(130)晶面微晶尺寸最大.SAXS研究表明,纯PHB的中间层约为1.5nm,片层厚约4.0nm;共混物的中间层在2.0nm左右,片层厚在5.0—7.2nm之间,50/50组分片层最厚.75/25组分晶相和非晶相的密度差最大.  相似文献   

4.
合成了聚马来酸6-(4-辛氧基偶氮苯氧基)-1-己酯(PMAN-OAB),并以其为质子给体,4-(4-庚氧基苯甲酰氧基)-苯乙烯基吡啶(7SZ)为质子受体,研究了两者复合前后的液晶行为,结果表明,PMAN-OAB在液晶态时是以羧酸二聚体形式存在的,其倾角为39.3°,7SZ含量在40%~90%范围内的复合物液晶范围比7SZ和PMAN-OAB的宽。  相似文献   

5.
用DPMS、TG、DTA等方法研究了聚β-羟基丁酸酯(PHB)及其共聚物P(HB-co-HV)的热分解行为和某些结构性质.能提供多至7个链节重复单元的裂解碎片.可较好地反应共聚物的组成和分布.结果表明:聚β-羟基烷酸酯的热分解具有较高的选择性,通过β-H转移反应形成由羧基和烯烃结尾的齐聚物.齐聚物准分子离子可进一步脱去一分子水.  相似文献   

6.
通过化学修饰,在乙烯-乙烯醇共聚物(EVA)分子链上分别引入磺酸基、磷酸基或胺基等,制得具有聚离子性质EVA衍生物.由这些聚离子复合而形成的聚离于复合物,即使在含水状态也很少失其强度.动态力学性能的测定表明,除了聚离子之间的静电相互作用外,EVA中的乙撑链段及共聚物主链的结晶也对维持聚离子复合物的强度有贡献.在水-二甲基甲酰胺一无机强电解质三组分混合溶剂中,与使用NaBr或UBr的体系比较,聚离子复合物更易溶解于使用Ca(SON)2、ZnO2或NaSCN的体系.  相似文献   

7.
DSC和FTIR测试表明,结晶/非晶共混体系聚(β-羟基丁酸酯)(PHB)/聚双酚A羧基醚是部分相容的。熔融结晶退火可以大大提高共混物的结晶度,增加其相容性。75/25组分PHB相结晶度最大,50/50组分晶面微晶尺寸最大。  相似文献   

8.
研究了几种新型含有机硅二元和三元多嵌段共聚物的氧,氮选择透过性能。其中双酚A聚羟基醚-聚二甲基硅氧烷二元多嵌段共聚物-(PHE-PDMS)的透氧系数P02=510Barrer,氧氮分离系数a02/N2=2.2;聚苯醚-聚二甲基硅氧烷-聚对羟基苯乙烯三元多嵌段共聚物-(PPO-PDMS-PHS)的P02=156Barrer,do2/N2=2.4,两者都具有良好的力学性能,此外,含有机硅三元多嵌段共聚  相似文献   

9.
由原位缩聚制备了刚性高分子聚酰亚胺(PI)和柔性基体聚N-乙烯吡咯烷附(PVP)的分子复合物,并由实验证明了中间体聚酰胺酸(PA)和聚乙烯吡咯烷酮大分子之间存在的酸一碱相互作用.这种相互作用促进了混容性,使聚酰亚胺能以分子水平或接近分子水平分散在聚毗咯烷酮的基体之中.聚酰亚胺/聚N-乙烯吡咯烷团分子复合物的薄膜呈透明性,在整个组成范围内只有一个Tg,显示单相行为。当PI含量<20%时,SEM相片呈现均相形貌,看不到PI微晶.广角X-ray衍射图表明PI特征结晶峰消失,和无定形的PVP完全混容.当PI含量>40%,SEM显示有均匀分布的、棒状PI微晶存在.通过分子复合,即使PI含量为10%,聚N-乙烯吡咯烷酮不再溶于乙醇,耐热性也有提高.  相似文献   

10.
研究了制样过程对聚β-羟基丁酸酯(PHB)/聚醋酸乙烯酯(PVAc)共混体系的相容性和结晶行为的影响,DSC、SAXS、POM等实验结果表明,PHB/PVAc共混物经溶液成膜后处于分相的状态,PVAc对PHB的结晶能力影响不大,而经熔融处理后,PHB/PVAc共混物则处于相容的均相状态,随PVAc在共混物中含量的增加,PHB的冷结晶温度升高,球晶增长速率下降,织态结构变得不规整。当PVAc的含量高于80%时,PHB失去结晶能力。  相似文献   

11.
使用匀胶机(spincoater),通过溶液铸膜的方法,在铝箔基板上制备出具有不同厚度的聚3羟基丁酸酯(PHB)薄膜.20℃室温条件下,通过衰减全反射傅立叶红外光谱(ATRFTIR)原位观测了不同厚度薄膜的结晶过程,并通过偏光ATRFTIR对薄膜中PHB分子的取向进行了研究.ATRFTIR原位观测结果显示,PHB在薄膜中的结晶速率以及结晶度均随着薄膜厚度的减小而逐渐降低;同时,偏光ATRFTIR测试结果表明,随膜厚减小,薄膜中结晶部分的PHB分子逐渐倾向于沿垂直于基板表面方向取向,膜越薄,倾向越明显.可以认为,PHB分子与基板间的相互作用以及扩散控制结晶导致了上述现象的产生.  相似文献   

12.
High molecular weight copolyesters were prepared by the acidolysis of poly(ethylene terephthalate) with p-acetoxybenzoic acid and polycondensation through the acetate and carboxyl groups. The mechanical properties of the injection-molded copolyesters containing 40–90 mole-% p-hydroxybenzoic acid (PHB) were highly anisotropic and dependent upon the PHB content, polyester molecular weight, injection-molding temperature, and specimen thickness. As the injection-molding temperature increased and the specimen thickness decreased, the tensile strength, stiffness, and Izod impact strength increased when measured along the direction of flow of the polymer melt, and the coefficient of thermal expansion was zero. In some compositions these properties were superior to those of commercial glass fiber reinforced polyesters. Maximum tensile strengths, flexural moduli, notched Izod impact strengths, and minimum melt viscosities were obtained with polyesters containing 60–70 mole-% PHB. Higher oxygen indicies (39–40) and heat deflection temperatures (150–220°C) were obtained with 80–90 mole-% PHB.  相似文献   

13.
Blends of bacterial poly((R)-3-hydroxybutyrate) (PHB) and poly(l-lactic acid) (PLLA) synthesized by polycondensation of l-lactic acid or by ring-opening polymerization of l-lactide were studied. Miscibility was investigated through both conventional differential scanning calorimetry (DSC) and temperature-modulated DSC (TMDSC). PHB and low-molar mass PLLA were miscible in a whole concentration range, and a single glass transition temperature was observed. On the other hand, PHB/high-molar mass PLLA mixtures phase separate, giving rise to two glass transition temperatures corresponding to PHB and PLLA. A treatment of blends at 190 °C leads to formation of block/multiblock/random copolymers, and blends become miscible.  相似文献   

14.
Graft copolymers of poly(methyl methacrylate) with poly(3-hydroxybutyrate), PHB, segments as long side chains were prepared by the macromonomer method. PHB macromonomers were prepared from the esterification of oligomers with 2-hydroxyethyl methacrylate at their carboxylic acid end. Esterification products displayed low polydispersity indices (ca. 1.2) and a functionality of over 83%, with a Mn of 2,020. Using free radical polymerization methods, the macromonomers were copolymerized with methyl methacrylate to yield graft (comb type) copolymers at different comonomer feed ratios. The graft copolymers contained from 0.5 to 14 mol-% of PHB blocks, with a glass transition temperature decreasing from 100 to 3 degrees C.  相似文献   

15.
A highly sensitive analytical method for evaluation of poly(L-lactide) (PLA), poly(epsilon-caprolactone) (PCL), poly(beta-hydroxybutyrate) (PHB), and poly(butylene succinate) (PBS) degradability was developed using coated cellulose paper, prepared by penetration and adhesion of these plastics into/onto the cellulose paper. Enzymatic degradability of the obtained plastic coated papers was evaluated using various commercial proteases and lipases. PLA coated paper was highly susceptible to subtilisin and mammalian enzymes, alpha-chymotrypsin, elastase and trypsin. To our knowledge, this is the first report on the degradation of PLA coated paper using subtilisin and mammalian enzymes. Almost all lipase preparations degraded PCL and PHB coated papers but not PBS coated paper. The biodegradability of plastic coated paper was greater than that of plastic powder. The penetration of plastic into cellulose paper by coating improved the plastic degradability, and can be regulated easily.  相似文献   

16.
Whiskers of poly(4-hydroxybenzoate) [poly(4-HBA)] were prepared by polycondensation of free 4-hydroxybenzoic acid with acetic anhydride and pyridine in a high boiling inert solvent. The purity of the monomer is decisive for the success of the synthesis. For a less pure 4-hydroxybenzoic acid, the preparation of acetylated oligomers with acetylchloride, followed by polycondensation of the isolated oligomers is a suitable alternative. Whiskers, with a solid-solid phase transition at 364°C were obtained, which is the highest temperature reported for this transition so far. Two batches of composites were prepared from nylon-6 using polyester whiskers with an alkaline or an acidic surface treatment. A third batch was prepared using poly(ester-amide) whiskers. The mechanical properties of these composites indicate that the surface treatment does not play any role, and that the poly(esteramide)s are inferior to the polyester whiskers, because they are not single crystals. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
A series of enzymatically recyclable poly(ester-urethane)s consisting of a biodegradable diurethane moiety as a hard segment and an ester moiety as an enzymatically cleavable linkage was chemo-enzymatically prepared by two routes. The poly(ester-urethane) was prepared by a) the ring-opening polymerization of a cyclic ester-urethane monomer synthesized via the transesterification reaction of biodegradable diurethanediol and dicarboxylate ester using lipase and b) the direct polycondensation of a diurethanediol and a dicarboxylate ester. A significantly higher molecular-weight poly(ester-urethane) having the highest molecular weight (Mw) of 101,000 was produced by the ring-opening polymerization of the cyclic ester-urethane monomer when compared with that produced by the polycondensation of the dicarboxylate ester with diurethanediol. The poly(ester-urethane) was readily degraded by lipase into the corresponding cyclic oligomers; the oligomers were readily repolymerized by the ring-opening polymerization using lipase for chemical recycling.  相似文献   

18.
Fully-biodegradable bacterial poly(3-hydroxybutyrate) (PHB)/chemosynthetic poly(vinyl alcohol) (PVA) blend films with compositional gradient from one surface to the other surface of the films were prepared by a dissolution-diffusion technique. Three kinds of PVA samples, high- and low-molecular weight atactic PVA and highly syndiotactic PVA (s-PVA), were used in order to investigate the effects of molecular weight and tactic structure on the generation of compositional gradient. The solution of PHB in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), which is also a good solvent for PVA, was cast on the PVA film and then the solvent HFIP was evaporated. By selecting the optimum volume of solvent and the evaporation rate, the PHB/PVA blend film with compositional gradient was obtained. The formation of compositional gradient was confirmed by FT-IR microscopy and ATR-FT-IR analysis. The 50%/50% PHB/s-PVA blend film with a nearly ideal compositional gradient, that is, the composition of PHB (or PVA) in the film changing gradually from 100% at one surface to 0% at the other surface of the film was obtained by casting PHB/HFIP solution on to the s-PVA film. Positional dependence of the absorbance of C==O and OH stretching bands along the film thickness direction for the PHB/S-PVA cast films.  相似文献   

19.
This work seeks bringing a technological and social contribution by searching blends and composites of poly(3-hydroxybutyrate) (PHB) and polyethylene widely used in packaging films, and colloidal silica. The mixtures were prepared by extrusion using a single-screw extruder and were analyzed regarding their thermal and mechanical properties and morphology. The results have shown PHB toughness in the studied compositions, which elongation at break was in the range 5–80% compared to 2% for neat PHB. The small amount (0.2 to 0.4%) of added silica seemed to increase in 20% the tensile strength. The thermal degradation by thermogravimetry from room temperature to 800 °C revealed a mixed behavior for the composites between PHB and polyethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号