首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
王进  王军霞  曾凡桂  吴秀玲 《化学学报》2010,68(16):1653-1660
利用分子力场和分子动力学(MD)的方法研究了Li-蒙脱石的结构构型, 层间阳离子的水化行为、水分子的结构特征以及它们的扩散性质. 分子力场构型优化结果表明: Li-蒙脱石的层间距、体积和密度与层间水含量有关; MD模拟的动画轨迹显示Li-蒙脱石层间Li的位置与层间电荷位置有关. 均方根位移和自扩散系数的计算结果表明: 层间阳离子、水分子在Li-蒙脱石一、二层水合物中的扩散受到上下粘土片表面的限制, 在三层水合物中开始离开粘土层面向其它方向快速扩散. 径向分布函数及其结构因子的分析结果表明Li在一、二、三层水合物中有不同的水合层; 层间水分子的结构特征说明其在蒙脱石层间有水合水分子和自由水分子之分, 且它们的比值在一、二和三层水合物中有所不同.  相似文献   

2.
水化镁基蒙脱石的分子动力学模拟   总被引:1,自引:0,他引:1  
方沁华  黄世萍  刘志平  汪文川 《化学学报》2004,62(24):2407-2414
利用分子动力学(MD)模拟了300 K时镁基蒙脱石(粘土)层间水和镁离子的结构和动力学性质.模拟结果显示水在粘土层间分为二层,只有一小部分水被粘土表面吸附,与粘土结构中的羟基形成氢键,不同分布位置的水处于动态平衡.层间水分子氢键配位数比普通水少24%左右,水在粘土中自扩散系数D=5.355×10-10 m2·s-1,约为主体相水的1/4.镁离子在粘土层间形成一层,其与水分子配位数约为6.进一步讨论了温度对粘土层中水的结构和动力学性质的影响.随着温度升高,水层的局部密度ρ(z)降低,水在XY方向的扩散系数不断增大.当温度达到600 K后,层间水分子间的氢键断裂,与超临界状态下水的结构相似,层间水的扩散系数达最大值,温度进一步升至700 K时,其值基本无变化.  相似文献   

3.
王进  曾凡桂  王军霞 《化学学报》2006,64(16):1654-1658
运用分子动力学(molecular dynamics, MD)方法分别研究了含有32, 64和96个水分子的Li-, Na-, K-蒙脱石层间阳离子与水分子的位置和结构. 计算结果表明蒙脱石层间阳离子位置与四面体和八面体电荷位置及离子的大小有关. 一层水合物中可以观察到三种阳离子都能和四面体电荷与八面体电荷位置分别形成内、外配位作用. 二层水合物中, 仍然可以观察到Li和Na与电荷位置的配位作用, 但是已经开始向层中其他方向扩散, 而K仍然在粘土的表面附近. 三层水合物中, Li, Na开始从电荷位置和表面分离, K也开始向层间其他方向扩散. 水分子在所有三种水合物中都分散于层间各个方向. 径向分布函数的分析结果表明层间三种阳离子组织水分子的能力不同, 水化作用随着阳离子半径的增大而减弱; 此外层中水分子的聚合程度随着水分子的增加而加强, 水分子的结构也不同于模拟的液体水分子的结构; 说明蒙脱石层间阳离子的溶剂化作用对水分子的组织起着重要的作用.  相似文献   

4.
采用分子动力学方法模拟二氟尼柳插层水滑石(DIF/LDHs)的超分子结构, 研究复合材料主客体间形成的氢键以及水合膨胀特性.结果表明, 当水分子总数与DIF分子总数之比Nw≤3时, 层间距dc保持基本恒定, 约1.80 nm; 当Nw≥4时, 层间距逐渐增大, 且符合dc=1.2611Nw+13.63线性方程. 随着水分子个数增加, 水合能驻UH逐渐增大. 当Nw≤16时, 由于⊿UH<-41.84 kJ·mol-1, LDHs-DIF可以持续吸收水, 从而使材料层间距不断膨胀. 但当Nw≥24时, ⊿UH>-41.84 kJ·mol-1, 此时LDHs-DIF层间不能再进一步水合, 因此LDHs-DIF在水环境中膨胀具有一定的限度. 水滑石层间存在复杂的氢键网络. DIF/LDHs水合过程中, 水分子首先同步与层板和阴离子构成氢键; 当阴离子趋于饱和后, 水分子继续与层板形成氢键, 并逐步发生L-W型氢键取代L-A型氢键, 驱使阴离子向层间中央移动, 与层板发生隔离; 最后水分子在水滑石羟基表面形成有序结构化水层.  相似文献   

5.
通过构建镁锡水滑石(Mg3Sn-LDHs-yH2O)周期性计算模型,基于密度泛函理论,用CASTEP程序模块,进行模型的几何全优化.对各体系的结构参数、Mulliken电荷布居、态密度(DOS)、逐级水合能等进行分析,探究客体CO320-和H2O的分布形态及其与主体层板的超分子作用.结果表明,[Mg6Sn2(OH)16]4+层间插入客体阴离子CO320-和水分子后,主客体间存在着较强的超分子作用力,主要包括静电和氢键作用,且氢键作用在水合过程中起主导作用,总体上层板-水(L-W)型/层板-阴离子(L-A)型氢键强度要强于阴离子-水(A-W)型/水-水(W-W)型氢键.随着层间水分子的增多,层间距先增大后又稍降低.当y=0、1时,客体所在的平面与主体层板平行,且与两层板的距离基本相等;当y=2、3时,客体以偏向某一层板的形式存在.与层间H2O相比,层间阴离子CO230-对体系态密度的影响更显著,层板与CO320-的总体作用力大于与H2O的总体作用力.随着水分子数的增加,Mg3Sn-LDHs-yH2O体系的逐级水合能绝对值逐渐降低,说明Mg3Sn-LDHs的水合程度不会无限增加,而是具有饱和量.  相似文献   

6.
对50个单元构成的聚N,N-二乙基丙烯酰胺(PDEA)低聚物的水溶液体系进行了分子动力学的研究,分别模拟了300 K时的伸展链、310 K时的伸展链以及紧缩链与水构成的体系,对溶液中PDEA周围溶剂水分子的分布情况以及水分子形成氢键的情况进行了统计,结果表明在PDEA周围的水产生了比本体水更有序的结构,形成了更多的氢键,这种有序结构维持到第二水合层甚至更远.发生相分离后,PDEA与水分子形成的氢键大部分未被破坏,水合层中每个水分子形成的氢键数也没有明显变化,但水合层(形成有序结构的水分子)内水分子数目的减少使得总的氢键数目减少,从而造成体系能量增加及熵增加.同时还研究了聚合物及水分子的自扩散系数,表明PDEA影响周围水分子结构的同时,对水的动力学性质也产生了很大影响.  相似文献   

7.
以胜利褐煤为研究对象,利用FT-IR等手段,用灰分、不同湿度下的平衡复吸水含量等,系统研究了不同相对湿度下K+、Na+、Ca2+、Mg2+的水合作用对胜利褐煤平衡复吸水含量的影响。结果表明,相同浓度不同类型的金属离子与煤样的交换能力的趋势为Ca2+Na+K+Mg2+。金属离子对胜利褐煤平衡复吸水含量影响力的顺序为Mg2+Ca2+Na+≈K+。相对湿度高时,平衡复吸水含量的主要控制因素为游离水分子之间的分子作用力;相对湿度中等时,平衡复吸水含量的主要控制因素为金属水簇与毛细管之间的毛细管作用力;相对湿度低时,平衡复吸水含量的主要控制因素为金属离子的水合作用。  相似文献   

8.
氨基硅烷偶联剂对蒙脱石的修饰改性研究   总被引:8,自引:0,他引:8  
研究了氨基硅烷偶联剂对蒙脱石的修饰改性,并和长链烷基硅烷偶联剂作对比.通过改性前后蒙脱石的傅立叶红外光谱(FT-IR),广角X射线衍射(WAXD),热失重分析(TGA)研究发现,在冰醋酸的处理下,氨基硅烷偶联剂不但能够对蒙脱石进行表面偶联修饰而且能够以插层剂的形式进入蒙脱石的层间.初步的浸润/分散性实验结果表明:氨基硅烷插层/表面修饰改性的蒙脱石在弱极性乙醇溶剂中的分散性能明显提高.  相似文献   

9.
孙红娟  彭同江  陈彦翠  古朝建 《化学学报》2011,69(17):2003-2008
基于蒙脱石层间域的二维纳米反应器属性,通过溶剂化作用,将氧化钛前躯体钛酸丁酯引入有机季铵盐阳离子插层的蒙脱石层间域中,并使其在蒙脱石层间域中水解、成核和相变结晶.采用XRD、原位升温Raman光谱、TEM分析手段研究了钛酸丁酯进入蒙脱石层间域过程,以及钛酸丁酯在蒙脱石层间域中水解和TiO2成核及相转变过程.结果表明钛酸...  相似文献   

10.
离子交换蒙脱石的热稳定性   总被引:1,自引:0,他引:1  
从天然膨润土出发, 制备了Ni~(2+)蒙脱石(简表成Ni_(2+)-M)催化剂, 并在液相脱硫过程中评价了它们的催化氧化活性. 样品的DTA与TPR结果表明, 蒙脱石层间可交换Ni~(2+)离子在较高温度下可以直接与氧结合成氧化物, 对于Ni~(2+)-M催化剂高温失活, 这种结合的影响可能较Ni~(2+)离子受热激活而嵌入层结构的影响更为重要。  相似文献   

11.
While the swelling behavior of laboratory-prepared homoionic montmorillonites has been studied extensively in numerous experimental and simulation works, far less attention has been given to much more abundant natural montmorillonites, containing a mix of monovalent and/or bivalent cations in interlayer spaces. We carried out a series of Monte Carlo simulations in order to investigate the reasons for the remarkable difference of experimental swelling patterns of a natural Na-rich/Mg-poor montmorillonite and a homoionic Na-montmorillonite. The simulations reproduced the swelling pattern of a natural montmorillonite, suggesting a mechanism of its hydration different from that of the homoionic montmorillonite. We also found that the differences in size and hydration energy of Mg2+ and Na+ ions have strong implications for the structure and the internal energy of interlayer water. This leads to a difference in the layer spacings of the simulated Mg- and Na-montmorillonites as large as approximately 2.1 A at lower water contents.  相似文献   

12.
Although the swelling of clay during moistening is a broadly experienced occurrence, the mechanisms driving it and especially the reason for the existence of a peculiar gap between crystalline and osmotic swelling of Na-montmorillonite are not yet fully understood. We obtained a deeper insight by means of Monte Carlo simulations of Na-montmorillonite swelling, which yield the swelling curve, interaction energies between and characteristic positions of structural atoms and water molecules. We find that a chainlike structure consisting of Na cations, water molecules, and oxygens of substituted tetrahedrons of neighboring mineral layers is formed in the interlayer space of Na-montmorillonite at a layer spacing of approximately 19 A, where experimental investigations show termination of crystalline swelling. Such a persistent structure may lock the interlayer space, until excess water is able to break this chain by osmotic forces. We suggest that its formation is the reason for the existence of a gap in layer spacings between approximately 19 and approximately 40 A, which have been named "forbidden" layer spacings in experimental studies.  相似文献   

13.
Tunell I  Lim C 《Inorganic chemistry》2006,45(12):4811-4819
Many of the group IA and IIA metal ions, such as Na+, K+, Mg2+, and Ca2+, play crucial roles in biological functions. Previous theoretical studies generally focus on the number of water molecules bound to a particular (as opposed to all) alkali or alkaline earth cations and could not establish a single preferred CN for the heavier alkali and alkaline earth ion-water complexes. Crystal structures of hydrated Na+, K+, and Rb+ also cannot establish the preferred number of inner-shell water molecules bound to these cations. Consequently, it is unclear if the gas-phase CNs of group IA metal hydrates increase with increasing ion size, as observed for the group IIA series from the Cambridge Structural Database, and if the same factors govern the gas-phase CNs of both group IA and IIA ion-water complexes. Thus, in this work, we determine the number of water molecules directly bound to the series of alkali (Li+, Na+, K+, and Rb+) and alkaline earth (Be2+, Mg2+, Ca2+, Sr2+, and Ba2+) metal ions in the gas phase by computing the free energy for forming an isolated metal-aqua complex as a function of the number of water molecules at 298 K. The preferred gas-phase CNs of group IA hydrates appear insensitive to the ion size; they are all 4, except for Rb+, where a CN of 6 seems as likely. In contrast, the preferred gas-phase CNs of the group IIA dications increase with increasing ion size; they are 4 for Be2+, 6 for Mg2+ and Ca2+, and 7 for Sr2+ and Ba2+. An entropic penalty disfavors a gas-phase CN greater than 4 for group IA hydrates, but it does not dictate the gas-phase CNs of group IIA hydrates. Instead, interactions between the metal ion and first-shell water molecules and between first-shell and second-shell water molecules govern the preferred gas-phase CNs of the group IIA metal hydrates.  相似文献   

14.
A simple two-state model is proposed to explicitly derive the ionic contribution to the frequency-dependent dielectric permittivity of clay. This model is based on a separation of time scales and accounts for two possible solvation modes (inner/outer-sphere complexes) for ions in the interlayer spacing and a possible chemical exchange between both forms. The influence on the permittivity of thermodynamic (distribution constant K(d)) and dynamic (diffusion coefficient, chemical relaxation rate) parameters is discussed. In turn, this model is used to analyze experimental data obtained with Na-montmorillonite for two relative humidities. The values of the parameters extracted from these measurements, and their variation with water content, show that the proposed model is at least reasonable.  相似文献   

15.
We used both localized and periodic calculations on a series of monovalent (Li+, Na+, K+, Rb+, Cs+) and divalent (Mg2+, Ca2+, Sr2+, Ba2+) cations to monitor their effect on the swelling of clays. The activity order obtained for the exchangeable cations among all the monovalent and divalent series studied: Ca2+ > Sr2+ > Mg2+ > Rb+ > Ba2+ > Na+ > Li+ > Cs+ > K+. We have shown that, in case of dioctahedral smectite, the hydroxyl groups play a major role in their interaction with water and other polar molecules in the presence of an interlayer cation. We studied both type of clays, with a different surface structure and with/without water using a periodic calculation. Interlayer cations and charged 2:1 clay surfaces interact strongly with polar solvents; when it is in an aqueous medium, clay expands and the phenomenon is known as crystalline swelling. The extent of swelling is controlled by a balance between relatively strong swelling forces and electrostatic forces of attraction between the negatively charged phyllosilicate layer and the positively charged interlayer cation. We have calculated the solvation energy at the first hydration shell of an exchangeable cation, but the results do not correspond directly to the experimental d-spacing values. A novel quantitative scale is proposed with the numbers generated by the relative nucleophilicity of the active cation sites in their hydrated state through Fukui functions within the helm of the hard soft acid base principle. The solvation effect thus measured show a perfect match with experiment, which proposes that the reactivity index calculation with a first hydration shell could rationalize the swelling mechanism for exchangeable cations. The conformers after electron donation or acceptance propose the swelling mechanism for monovalent and divalent cations.  相似文献   

16.
The hydration of Na-saturated Wyoming-type montmorillonite is investigated by Monte Carlo simulations at constant stress in the NP(zz)T ensemble and at constant chemical potential in the microVT ensemble, at the sedimentary basin temperature of 353 K and pressure of 625 bar, equivalent to 2-4 km depth. The simulations use procedures established in Chavez-Paez et al. [J. Chem. Phys. 114, 1405 (2001)]. At these conditions, simulations predict a single stable form of 1,2-water layer Na-montmorillonite, containing 164.38 mg/g or 53.37 molecules/layer of adsorbed water and having a spacing of 12.72 A. The corresponding density is 0.32 g/ml. Sodium ions are coordinated with six molecules of water separated 2.30-2.33 A. Water molecules are closer to the central interlayer plane and the spacing is larger than that at 300 K and 1 bar. The interlayer configuration consists of two symmetrical layers of oriented water molecules 1.038 A from the central plane, with the hydrogen atoms in two outermost layers, 3.826 A apart, and the sodium ions on the central plane located between the water layers. The interlayer configuration can be considered to be a stable two-layer intermediate between the one- and two-layer hydrates. Our simulations do not predict formation of other hydrates of Na-montmorillonite at 353 K and 615 bar.  相似文献   

17.
Non-equilibrium molecular dynamics(MD) simulations were performed according to the electronic anti-fouling technology, and some structural parameters and dynamic parameters of CaCl2 aqueous solution were taken as indicators to compare the different effect on the anti-fouling performance by applying different electric fields. The results show that electric fields can effectively decrease the viscosity of CaCl2 aqueous solution and enhance the ionic activity by enlarging the self-diffusion coefficient. In addition, with the same electric field strength, the electrostatic field is more effective at decreasing the viscosity of CaCl2 aqueous solution and increasing the self-diffusion coefficient of water molecules, while the alternating electric field is more effective at increasing the self-diffusion coefficient of Ca2+. Furthermore, an alternating electric field with different frequencies was applied; the results show that an 800 kHz frequency is most effective to decrease the viscosity, and a 700 kHz frequency is most effective to enhance the self-diffusion coefficient of water molecule. Otherwise, 400 kHz is most effective to enhance the self-diffusion coefficient of Ca2+. Additionally, by studying the change of structure parameters, it was concluded that an external electric field can enhance the hydration between Ca2+ and coordinated water molecules, and the alterna- ting electric field is more effective in this respect.  相似文献   

18.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. Here, the effect of metal ions and water on the structure of glycine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water on structures of Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (m = 0, 2, 5) complexes have been determined theoretically by employing the hybrid B3LYP exchange-correlation functional and using extended basis sets. Selected calculations were carried out also by means of CBS-QB3 model chemistry. The interaction enthalpies, entropies, and Gibbs energies of eight complexes Gly.Mn+ (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) were determined at the B3LYP density functional level of theory. The computed Gibbs energies DeltaG degrees are negative and span a rather broad energy interval (from -90 to -1100 kJ mol(-1)), meaning that the ions studied form strong complexes. The largest interaction Gibbs energy (-1076 kJ mol(-1)) was computed for the NiGly2+ complex. Calculations of the molecular structure and relative stability of the Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+; m = 0, 2, and 5) systems indicate that in the complexes with monovalent metal cations the most stable species are the NO coordinated metal cations in non-zwitterionic glycine. Divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ prefer coordination via the OO bifurcated bonds of the zwitterionic glycine. Stepwise addition of two and five water molecules leads to considerable changes in the relative stability of the hydrated species. Addition of two water molecules at the metal ion in both Gly.Mn+ and GlyZwitt.Mn+ complexes reduces the relative stability of metallic complexes of glycine. For Mn+ = Li+ or Na+, the addition of five water molecules does not change the relative order of stability. In the Gly.K+ complex, the solvation shell of water molecules around K+ ion has, because of the larger size of the potassium cation, a different structure with a reduced number of hydrogen-bonded contacts. This results in a net preference (by 10.3 kJ mol(-1)) of the GlyZwitt.K+H2O5 system. Addition of five water molecules to the glycine complexes containing divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ results in a net preference for non-zwitterionic glycine species. The computed relative Gibbs energies are quite high (-10 to -38 kJ mol(-1)), and the NO coordination is preferred in the Gly.Mn+(H2O)5 (Mn+ = Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) complexes over the OO coordination.  相似文献   

19.
This letter addresses how iron redox cycling and the hydration properties of the exchangeable cation influence the Br?nsted basicity of adsorbed water in 2:1 phyllosilicates. The probe pentachloroethane undergoes facile dehydrochlorination to tetrachloroethene, attributed to increases in the Br?nsted basicity of near-surface hydrating water molecules following the reduction of structural Fe(III) to Fe(II). This dehydrochlorination process is studied in the presence of Na(+)- or K(+)-saturated Upton montmorillonite [(Na0.82 (Si7.84 Al0.16)(Al3.10 Fe(3+)0.3 Mg0.66) O20 (OH)4] or ferruginous smectite [(Na0.87 Si7.38 Al0.62)(Al1.08) Fe(3+)2.67 Fe(2+)0.01 Mg0.23) O20 (OH)4]. The effect of iron redox cycling on pentachloroethane dehydrochlorination is studied using reduced or reduced and reoxidized smectite samples saturated with Na+ (fully expanded clay) or K+ (fully collapsed clay). Variations in the clay Br?nsted basicity following Na+ -for- K+ exchange are explained by cationic charge compensation or interlayer hydration/expansion imposed by the nature of the exchangeable cation. Inverse relations between K+ fixation and clay water content as well as trends in pentachloroethane transformation indicate that increases in the Br?nsted basicity result from increases in the clay hydrophilicity and shifts in the local activity of distorted clay water. Potassium fixation causes partially collapsed smectites bearing low amounts of structural Fe(II) to have a similar reactivity to that of fully expanded smectites (Na+ form) bearing higher amounts of structural Fe(II). In particular, the conversion of up to 80% of the pentachloroethane to tetrachloroethane by K+ -saturated, reoxidized Upton was explained because the fixation of K+ causes nonreversible expansion and incomplete reoxidation of structural Fe(II), which contributes to the stabilization of charge density near sites bearing Fe(II). Higher pentachloroethane conversions by Upton montmorillonite over ferruginous smectite, however, suggest that charge dispersion rather than site specificity contributes predominantly to clay reactivity. Thus, clay interlayer hydration/expansion imposed by the nature of the exchangeable cation alters water dissociation and proton exchange in Fe(II)-Fe(III) phyllosilicates susceptible to iron redox cycling.  相似文献   

20.
To study the change of interlayer structure of a Wyoming-type Na-montmorillonite as a result of the replacement of interlayer Na+ ions by cetylpyridinium (CP+) ions, a series of NPT Monte Carlo simulations of the clay mineral with different contents of CP+, Na+, Cl- ions and water in its interlayer space is carried out. In agreement with conclusions from experimental studies, the simulations show that the CP+ ions form monomolecular, bimolecular, and pseudotrimolecular layers with increasing interlayer contents. Calculated potential energies reveal that clay-organic interactions are stronger than organic-organic interactions in CP+-modified montmorillonite, which is in conformity with observations of earlier thermogravimetric experiments. The simulation results indicate that the pseudotrimolecular arrangement of CP+ ions is a prerequisite for the experimentally observed interlayer sorption of inorganic anions. Furthermore, in the interlayer space with a pseudotrimolecular layer, chloride ions favor the formation of pairs with inorganic rather than organic cations. On the basis of these findings and available experimental data, we propose that the interlayer sorption of inorganic anions from the pore space of an organically modified montmorillonite may occur not only in pairs with organic cations, as suggested earlier, but also in pairs with inorganic cations, which represents a so-far unconsidered and maybe more important mechanism of anion sorption on clay minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号