首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We designed Calcium Rubies, a family of functionalizable BAPTA-based red-fluorescent calcium (Ca(2+)) indicators as new tools for biological Ca(2+) imaging. The specificity of this Ca(2+)-indicator family is its side arm, attached on the ethylene glycol bridge that allows coupling the indicator to various groups while leaving open the possibility of aromatic substitutions on the BAPTA core for tuning the Ca(2+)-binding affinity. Using this possibility we now synthesize and characterize three different CaRubies with affinities between 3 and 22 μM. Their long excitation and emission wavelengths (peaks at 586/604 nm) allow their use in otherwise challenging multicolor experiments, e.g., when combining Ca(2+) uncaging or optogenetic stimulation with Ca(2+) imaging in cells expressing fluorescent proteins. We illustrate this capacity by the detection of Ca(2+) transients evoked by blue light in cultured astrocytes expressing CatCh, a light-sensitive Ca(2+)-translocating channelrhodopsin linked to yellow fluorescent protein. Using time-correlated single-photon counting, we measured fluorescence lifetimes for all CaRubies and demonstrate a 10-fold increase in the average lifetime upon Ca(2+) chelation. Since only the fluorescence quantum yield but not the absorbance of the CaRubies is Ca(2+)-dependent, calibrated two-photon fluorescence excitation measurements of absolute Ca(2+) concentrations are feasible.  相似文献   

2.
1,3-Alternate calix[4]arene-based fluorescent chemosensors bearing two-photon absorbing chromophores have been synthesized, and their sensing behaviors toward metal ions were investigated via absorption band shifts as well as one- and two-photon fluorescence changes. Free ligands absorb the light at 461 nm and weakly emit their fluorescence at 600 nm when excited by UV-vis radiation at 461 nm, but no two-photon excited fluorescence is emitted by excitation at 780 nm. Addition of an Al(3+) or Pb(2+) ion to a solution of the ligand causes a blue-shifted absorption and enhanced fluorescence due to a declined resonance energy transfer (RET) upon excitation by one- and two-photon processes. Addition of a Pb(2+) ion to a solution of 1.K(+) results in a higher fluorescence intensity than the original 1.Pb(2+) complex regardless of one- or two-photon excitation, due to the allosteric effect induced by the complexation of K(+) with a crown loop.  相似文献   

3.
We report energy-transferring organically modified silica nanoparticles for two-photon photodynamic therapy. These nanoparticles co-encapsulate two-photon fluorescent dye nanoaggregates as an energy up-converting donor and a photosensitizing PDT drug as an acceptor. They combine two features: (i) aggregation-enhanced two-photon absorption and emission properties of a novel two-photon dye and (ii) nanoscopic fluorescence resonance energy transfer between this nanoaggregate and a photosensitizer, 2-devinyl-2-(1-hexyloxyethyl)pyropheophorbide. Stable aqueous dispersions of the co-encapsulating nanoparticles (diameter < or = 30 nm) have been prepared in the nonpolar interior of micelles by coprecipitating an organically modified silica sol with the photosensitizer and an excess amount of the two-photon dye which forms fluorescent aggregates by phase separation from the particle matrix. Using a multidisciplinary nanophotonic approach, we show: (i) indirect excitation of the photosensitizer through efficient two-photon excited intraparticle energy transfer from the dye aggregates in the intracellular environment of tumor cells and (ii) generation of singlet oxygen and in vitro cytotoxic effect in tumor cells by photosensitization under two-photon irradiation.  相似文献   

4.
《中国化学快报》2023,34(6):107949
The application of fluorescent probes for in vivo retinal imaging is of great importance, which could provide direct and crucial imaging evidence for a better understanding of common eye diseases. Herein, a group of bright organic luminogens with typical electron-donating (D) and electron-accepting (A) structures (abbreviated as LDs-BDM, LDs-BTM, and LDs-BHM) was synthesized through a simple single-step reaction. They were found to be efficient solid-state emitters with high fluorescence quantum yields of above 70% (e.g., 83.7% for LDs-BTM). Their light-emission properties could be tuned by the modulation of π-conjugation effect with methoxy groups at different substituent positions. Their resulting fluorescent nanoparticles (NPs) were demonstrated as specific lipid droplets (LDs) targeting probes with high brightness, good biocompatibility, and satisfactory photostability. LDs-BTM NPs with a large two-photon absorption cross section (σ2 = 249 GM) were further utilized as ultrabright two-photon fluorescence (2PF) nanoprobes for in vivo retina imaging of live zebrafish by NIR excitation at an ultralow concentration (0.5 µmol/L). Integrated histological structures at the tissue level and corresponding fine details at the cellular level of the embryonic retina of live zebrafish were clearly demonstrated. This is the first report of using ultrabright LDs-targeting nanoprobes to accurately measure fine details in the retina with 2PF microscopic technique. These good results are anticipated to open up a new avenue in the development of efficient 2PF emitters for non-invasive bioimaging of living animals.  相似文献   

5.
This paper reports the two-photon absorbing and orange-red fluorescence emitting properties of a series of new 2,1,3-benzothiadiazole (BTD)-based D-pi-A-pi-D-type and star-burst-type fluorescent dyes. In the D-pi-A-pi-D-type dyes 1-6, a central BTD core was connected with two terminal N,N-disubstituted amino groups via various pi-conjugated spacers. The star-burst-type dyes 8 and 10 have a three-branched structure composed of a central core (benzene core in 8 and triphenylamine core in 10) and three triphenylamine-containing BTD branches. All the BTD-based dyes displayed intense orange-red color fluorescence in a region of 550-689 nm, which was obtained by single-photon excitation with good fluorescent quantum yield up to 0.98 as well as by two-photon excitation. Large two-photon absorption (TPA) cross-sections (110-800 GM) of these BTD dyes were evaluated by open aperture Z-scan technique with a femtosecond Ti/sapphire laser. The TPA cross-sections of D-pi-A-pi-D-type dyes 2-6 with a benzene, thiophene, ethene, ethyne, and styrene moiety, respectively, as an additional pi-conjugated spacer are about 1.5-2.5 times larger than that of 1c with only a benzene spacer. The TPA cross-sections significantly increased in three-branched star-burst-type BTDs 8 (780 GM) with a benzene core and 10 (800 GM) with a triphenylamine core, which are about 3-5 times larger than those of the corresponding one-dimensional sub-units 9 (170 GM) and 11 (230 GM), respectively. The ratios of sigma/e(pi) between three-branched and one-dimensional dyes were 6.5:3.8 (for 8 and 9) and 6.0:4.0 (for 10 and 11), which are larger than those predicted simply on the basis of the chromophore number density (1:1), according to a cooperative enhancement of the two-photon absorbing nature in the three-branched system.  相似文献   

6.
Two-photon excitation microscopy (2PEM) has been known as a noninvasive and powerful bio-imaging tool for studying living cells, intact tissues and living animals because of their unique advantages such as localized excitation, deep tissue penetration as well as less photo-damage. However, the major limitations that hinder its practical applications in biological systems are low two-photon absorption cross sections of conventional fluorescence probes. Conjugated polymer nanoparticles (CPNs) consisting of highly fluorescent conjugated polymers are promising fluorescent probes for 2PEM due to their unique advantages including large two-photon absorption cross sections, high fluorescence quantum yield, good photo-stability and biocompatibility, facile chemical synthesis, tunable optical properties as well as versatile surface modifications. This account summarizes the recent efforts of our group on development of novel polyfluorene based CPNs as 2PEM contrast agents for live cell imaging.  相似文献   

7.
Jie Xu  Li Shang 《中国化学快报》2018,29(10):1436-1444
Recent advances in the development of near-infrared fluorescent metal nanoclusters for bioimaging applications have been thoroughly overviewed.  相似文献   

8.
A glucopyranose functionalized star-shaped oligomer, N-tris{4,4',4'-[(1E)-2-(2-{(E)-2-[4-(benzo[d]thiazol-2-yl)phenyl]vinyl}-9,9-bis(6-2-amido-2-deoxy-1-thio-β-D-glucopyranose-hexyl)-9H-fluoren-7-yl)vinyl]phenyl}phenylamine (TVFVBN-S-NH(2)), is synthesized for two-photon fluorescence imaging. In water, TVFVBN-S-NH(2) self-assembles into nanoparticles with an average diameter of ~49?nm and shows a fluorescence quantum yield of 0.21. Two-photon fluorescence measurements reveal that TVFVBN-S-NH(2) has a two-photon absorption cross-section of ~1100 GM at 780?nm in water. The active amine group on the glucopyranose moiety allows further functionalization of TVFVBN-S-NH(2) with folic acid to yield TVFVBN-S-NH(2) FA with similar optical and physical properties as those for TVFVBN-S-NH(2). Cellular imaging studies reveal that TVFVBN-S-NH(2) FA has increased uptake by MCF-7 cells relative to that for TVFVBN-S-NH(2), due to specific interactions between folic acid and folate receptors on the MCF-7 cell membrane. This study demonstrates the effectiveness of glycosylation as a molecular engineering strategy to yield water-soluble materials with a large two-photon absorption (TPA) cross-section for targeted cancer-cell imaging.  相似文献   

9.
《中国化学快报》2021,32(8):2380-2384
Hydrogen sulfide(H_2 S) is a signaling molecule that plays important roles in biological systems.The exploration of H_2 S as a new drug release trigger and its related fluorescent theranostic system is crucial for cancer bio-imaging and therapy.Herein,we designed a new two-photon ratiometric fluorescent theranostic prodrug(compound 1) and studied its spectroscopic properties and application in in vivo imaging.Compound 1 specifically reacted with H_2 S and released the free active therapeutic component of 7-ethyl-10-hydroxycamptothecin,which was accompanied with a red-shift fluorescence emission signal from 460 nm to 545 nm.The exogenous and endogenous H_2 S in living cells were imaged by compound 1 under one-photon and two-photon excitation.Furthermore,compound 1 monitored the H_2 S concentration changes in Caenorhabditis elegans by fluorescence imaging.Additionally,it showed effective drug release activation in situ tumor with exogenous and endogenous H_2 S as the trigger.The H_2 S-sensitive activation and drug-release properties highlight the potential of theranostic compound 1 in future cancer treatment and therapy.  相似文献   

10.
Near-infrared(NIR)lights are powerful tools to conduct deep-tissue imaging since NIR-Ⅰ wavelengths hold less photon absorption and NIR-Ⅱ wavelengths serve low photon scattering in the biological tissues compared with visible lights.Two-photon fluorescence lifetime microscopy(2PFLM)can utilize NIR-Ⅱ excitation and NIR-Ⅰ emission at the same time with the assistance of a well-designed fluorescent agent.Aggregation induced emission(AIE)dyes are famous for unique optical properties and could serve a large two-photon absorption(2PA)cross-section as aggregated dots.Herein,we report two-photon fluorescence lifetime microscopic imaging with NIR-Ⅱ excitation and NIR-Ⅰ emission using a novel deep-red AIE dye.The AIE-gens held a 2PA cross-section as large as 1.61×104GM at 1040 nm.Prepared AIE dots had a two-photon fluorescence peak at 790 nm and a stable lifetime of 2.2 ns under the excitation of 1040 nm femtosecond laser.The brain vessels of a living mouse were vividly reconstructed with the two-photon fluorescence lifetime information obtained by our home-made 2PFLM system.Abundant vessels as small as 3.17μm were still observed with a nice signal-background ratio at the depth of 750μm.Our work will inspire more insight into the improvement of the working wavelength of fluorescent agents and traditional 2PFLM.  相似文献   

11.
Tracking of Hg2+ in solutions as well as in living cells was conducted with a fluorescent chemodosimeter by measuring the spectral shift of its fluorescence under single- or two-photon excitation. The spectral hypsochromic shifts of this chemodosimeter when reacting with Hg2+ were found to be about 50 nm in acetonitrile/water solutions and 32 nm in Euglena gracilis 277 living cells. This chemodosimeter shows high sensitivity and selectivity, and is not influenced by the pH values. It can signal Hg2+ in solutions down to the ppb range under either single-photon excitation (SPE) at 405 nm or two-photon excitation (TPE) at 800 nm. However, with low cellular chemodosimeter concentrations, the SPE spectra were disturbed by the auto-fluorescence from the native fluorophore in the cell, while the TPE spectra were still of high quality since the two-photon absorption cross section of this chemodosimeter is much larger than that of the native fluorophores in the cell.  相似文献   

12.
Near-infrared (NIR) fluorescence imaging is promising due to the high penetration depths and minimal levels of autofluorescence in living systems. However, it suffers from low fluorescent quantum yield, and metal-enhanced fluorescence (MEF) is considered to be a promising technique to overcome this. Stimuli-responsive NIR fluorescence enhancement shows remarkable potential for applications in medical imaging and diagnosis. Herein, we successfully fabricated an enzyme-responsive near-infrared sensor based on MEF by functionalizing gold nanoparticles with NIR fluorophores and enzyme-responsive self-aggregation moieties. The NIR fluorescence of fluorophores on the gold nanoparticles was significantly enhanced due to increases both in the light scattering intensity and in the radiative decay rate (k r) of the NIR fluorophores, along with relatively small variation in the nonradiative decay rate. This novel strategy for NIR fluorescent sensors should be particularly promising for NIR fluorescence imaging of enzyme activities and early diagnosis based on rationally designed nanomaterials.  相似文献   

13.
A series of star-shaped octupolar triazatruxenes (TATs, 1-6) with intramolecular "push-pull" structure were synthesized and their photophysical properties have been systematically investigated. These chromophores showed obvious solvatochromic effect, i.e., significant bathochromic shift of the emission spectra and larger Stokes shifts were observed in more polar solvents mainly due to photoinduced intramolecular charge transfer (ICT). The two-photon absorption (2PA) cross-section values were determined by two-photon excited fluorescence (2PEF) measurements in toluene and THF. These chromophores exhibited large two-photon absorption cross-sections ranging from 280 to 1620 GM in the near-infrared (NIR) region. Compound 6 showed the largest 2PA action cross-section (σ(2)Φ) of 564 GM and could be a potential two-photon fluorescent (2PF) probe. In addition, compounds 1-6 all displayed good thermal stability and photostability.  相似文献   

14.
A molecular two-photon sensor for the metal ions derived from bis(2-pyridyl)amine as the receptor is reported. The sensor emits strong two-photon fluorescence when excited by 780 nm laser photons. Moreover, the binding constants measured by the one- and two-photon fluorescence are similar. This result may be useful for the design of efficient two-photon fluorescence probe for biological substrates.  相似文献   

15.
Biomaterials for in vivo fluorescence imaging are required to be biocompatible, nontoxic, photostable and highly fluorescent. Fluorescence must be in the near infrared (NIR) region of the electromagnetic spectrum to avoid absorption and autofluorescence of endogenous tissues. NIR fluorescent polystyrene nanoparticles may be considered ideal biomaterials for in vivo imaging applications. These NIR nanoparticles were prepared by a swelling process of polystyrene template nanoparticles with a hydrophobic NIR dye dissolved in a water‐miscible swelling solvent, a method developed for preparation of nonbiodegradable nanoparticles, for NIR fluorescent bioimaging applications. This method overcomes common problems that occur with dye entrapment during nanoparticle formation such as loss of fluorescence and size polydispersity. Fluorescence intensity of the nanoparticles was found to be size dependent, and was optimized for differently sized nanoparticles. The resulting NIR nanoparticles were also found to be more fluorescent and highly photostable compared to the free dye in solution, showing their potential as biomaterials for in vivo fluorescence imaging.  相似文献   

16.
By means of time-dependent density functional theory, we calculate the two-photon cross-sections for the lowest relevant excitations in some model chromophores of intrinsically fluorescent proteins. The two-photon strength of the first, one-photon active transition varies among the various chromophores, in line with experimental findings. Interestingly, additional transitions with large two-photon cross-sections are found in the 500-700 nm region arising from near-resonant enhancement, as revealed by few-state model analysis. Multiphoton excitation of fluorescent proteins in this spectral region can lead to relevant application for bioimaging.  相似文献   

17.
A new approach to two-photon excited photodynamic therapy has been developed. A dendritic array of eight donor chromophores capable of two-photon absorption (TPA) was covalently attached to a central porphyrin acceptor. Steady-state fluorescence measurements demonstrated that the donor chromophores transfer excited-state energy to the porphyrin with 97% efficiency. Two-photon excitation of the donor chromophores at 780 nm resulted in a dramatic increase in porphyrin fluorescence relative to a porphyrin model compound. Enhanced singlet oxygen luminescence was observed from oxygen-saturated solutions of the target compound under two-photon excitation conditions.  相似文献   

18.
Porphyrin molecules have a highly conjugated cyclic structure and are theorized to have unusually large two-photon absorptivities (sigmaTPA), i.e., sigmaTPA approximately 10(2) GM. The authors tested this claim. Ultrafast two-photon absorption (TPA) spectroscopy was performed on solutions of hemoglobin, which contains a naturally occurring metaloporphyrin. They used a pump-probe technique to directly detect the change in transmission induced by TPA over the wavelength range of lambda0=780-880 nm. As controls, they measured the TPA of the dyes rhodamine 6G and B; their measurements both verify and extend previously reported values. In new results, hemoglobin was found to have a peak two-photon absorptivity of sigmaTPA approximately 150 GM at lambda0=825 nm, near a resonance of the Soret band. This value supports theoretical expectations. They also found a significant difference in the TPA of carboxyhemoglobin versus oxyhemoglobin, e.g., sigmaTPA=61 GM versus sigmaTPA=18 GM, respectively, at lambda0=850 nm, which shows that the ligand affects the electronic states involved in TPA.  相似文献   

19.
A novel “turn-on” two-photon fluorescent probe containing a π-conjugated triarylboron luminogen and a maleimide moiety DMDP-M based on the photo-induced electron transfer (PET) mechanism for biothiol detection was designed and synthesized. By simply loading the hydrophobic DMDP-M on a cross-linked Pluronic® F127 nanogel (CL-F127), a probing system DMDP-M/CL-F127 was established, which shows quick response, high selectivity and sensitivity to cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) in aqueous phase. The DMDP-M/CL-F127 system presented the fastest response to Cys with a rate constant of 0.56 min−1, and the detection limit to Cys was calculated to be as low as 0.18 μM. The DMDP-M/CL-F127 system has been successfully applied to the fluorescence imaging of biothiols in NIH/3T3 fibroblasts either with single-photon or two-photon excitation because of its high biocompatibility and cell-membrane permeability. The present work provides a general, simple and efficient strategy for the application of hydrophobic molecules to sensing biothiols in aqueous phase, and a novel sensing system for intracellular biothiols fitted for both single-photon and two-photon fluorescence imaging.  相似文献   

20.
This review summarized the recent advances in small-molecule two-photon fl uorescent probes for monitoring a wide variety of biomolecules and changes inside micro-environment in mitochondria and lysosomes, or served as mitotracker and lysotracker with the assistance of two-photon microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号