首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 457 毫秒
1.
A novel silicon‐based compound, 10‐phenyl‐2′‐(triphenylsilyl)‐10H‐spiro[acridine‐9,9′‐fluorene] (SSTF), with spiro structure has been designed, synthesized, and characterized. Its thermal, electronic absorption, and photoluminescence properties were studied. Its energy levels make it suitable as a host material or exciton‐blocking material in blue phosphorescent organic light‐emitting diodes (PhOLEDs). Accordingly, blue‐emitting devices with iridium(III) bis[(4,6‐difluorophenyl)‐pyridinato‐N,C2′]picolinate (FIrpic) as phosphorescent dopant have been fabricated and show high efficiency with low roll‐off. In particular, 44.0 cd A?1 (41.3 lm W?1) at 100 cd m?2 and 41.9 cd A?1 (32.9 lm W?1) at 1000 cd m?2 were achieved when SSTF was used as host material; 28.1 lm W?1 at 100 cd m?2 and 20.6 lm W?1 at 1000 cd m?2 were achieved when SSTF was used as exciton‐blocking layer. All of the results are superior to those of the reference devices and show the potential applicability and versatility of SSTF in blue PhOLEDs.  相似文献   

2.
Blue light‐emitting materials are receiving considerable academic and industrial interest due to their potential applications in optoelectronic devices. In this study, blue light‐emitting copolymers based on 9,9′ ‐ dioctylfluorene and 2,2′‐(1,4‐phenylene)‐bis(benzimidazole) moieties were synthesized through palladium‐catalyzed Suzuki coupling reaction. While the copolymer consisting of unsubstituted benzimidazoles (PFBI0) is insoluble in common organic solvents, its counterpart with N‐octyl substituted benzimidazoles (PFBI8) enjoys good solubility in toluene, tetrahydrofuran, dichloromethane (DCM), and chloroform. The PFBI8 copolymer shows good thermal stability, whose glass transition temperature and onset decomposition temperature are 103 and 428 °C, respectively. Its solutions emit blue light efficiently, with the quantum yield up to 99% in chloroform. The electroluminescence (EL) device of PFBI8 with the configuration of indium‐tin oxide/poly(ethylenedioxythiophene):poly(styrene sulfonic acid)/PFBI8/1,3,5‐tris(1‐phenyl‐1H‐benzimidazole‐2‐yl)benzene/LiF/Al emits blue light with the maximum at 448 nm. Such unoptimized polymer light‐emitting diode (PLED) exhibits a maximum luminance of 1534 cd/m2 with the current efficiency and power efficiency of 0.67 cd/A and 0.20 lm/W, respectively. The efficient blue emission and good EL performance make PFBI8 promising for optoelectronic applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
A new triphenylamine‐bridged fluoranthene derivative, 4‐(7,10‐diphenylfluoranthen‐8‐yl)‐N‐[4‐(7,10‐diphenylfluoranthen‐8‐yl)phenyl]‐N‐phenylaniline (BDPFPA), with a high glass transition temperature of 220 °C has been synthesized and characterized. BDPFPA is a highly fluorescent and versatile material that can be used as a nondoped green emitter and as a hole transporter. BDPFPA was used in a standard trilayer device as the emitting layer, which showed a low turn‐on voltage (<3 V) and a high efficiency of 11.6 cd A?1. The device also shows little efficiency roll‐off at high brightness. For example, the efficiency can still be maintained at 11.4 cd A?1 (5.4 lm W?1) at a brightness of 10 000 cd m?2. These results are among the best reported for nondoped fluorescent green organic light‐emitting diodes. A simple bilayer device, in which BDPFPA serves as a hole‐transporting layer, has a maximum power efficiency of 3.3 lm W?1 and the performance is nearly 40 % higher than that of an N,N′‐bis(1‐naphthyl)‐N,N′‐ diphenyl‐1,1′‐biphenyl‐4,4′‐diamine (NPB)‐based standard device.  相似文献   

4.
Blue fluorescent materials with a 2‐(diphenylamino)fluoren‐7‐ylvinylarene emitting unit and tert‐butyl‐based blocking units were synthesized. The photophysical properties of these materials, including UV/Vis absorption, photoluminescent properties, and HOMO–LUMO energy levels, were characterized and rationalized with quantum‐mechanical DFT calculations. The electroluminescent properties of these molecules were examined through the fabrication of multilayer devices with a structure of indium–tin oxide, 4,4′‐bis{N‐[4‐(N,N‐di‐m‐tolylamino)phenyl]‐N‐phenylamino}biphenyl, 4′‐bis[N‐(1‐naphthyl)‐N‐phenylamino]biphenyl, and blue materials doped in 2‐methyl‐9,10‐di(2‐naphthyl)anthracene/tris(8‐quinolinolato)aluminum/LiF/Al. All devices exhibit highly efficient blue electroluminescence with high external quantum efficiency (3.20–7.72 % at 20 mA cm?2). A deep‐blue device with Commission Internationale de l’Eclairage (CIE) coordinates of (0.15, 0.11) that uses 7‐[2‐(3′,5′‐di‐tert‐butylbiphenyl‐4‐yl)vinyl]‐9,9‐diethyl‐2‐N‐(3,5‐di‐tert‐butylphenyl)‐2,4‐difluorobenzenamino‐9H‐fluorene as a dopant in the emitting layer showed a luminous efficiency and external quantum efficiency of 3.95 cd A?1 and 4.23 % at 20 mA cm?2, respectively. Furthermore, a highly efficient sky‐blue device that uses the dopant 7‐{2‐[2‐(3,5‐di‐tert‐butylphenyl)‐9,9′‐spirobifluorene‐7‐yl]vinyl}‐9,9‐diethyl‐2‐N,N‐diphenylamino‐9H‐fluorene exhibited a luminous efficiency and high quantum efficiency of 10.3 cd A?1 and 7.7 % at 20 mA cm?2, respectively, with CIE coordinates of (0.15, 0.20).  相似文献   

5.
Two new bipolar compounds, N,N,N′,N′‐tetraphenyl‐5′‐(1‐phenyl‐1H‐benzimidazol‐2‐yl)‐1,1′:3′,1′′‐terphenyl‐4,4′′‐diamine ( 1 ) and N,N,N′,N′‐tetraphenyl‐5′‐(1‐phenyl‐1H‐benzimidazol‐2‐yl)‐1,1′:3′,1′′‐terphenyl‐3,3′′‐diamine ( 2 ), were synthesized and characterized, and their thermal, photophysical, and electrochemical properties were investigated. Compounds 1 and 2 possess good thermal stability with high glass‐transition temperatures of 109–129 °C and thermal decomposition temperatures of 501–531 °C. The fluorescence quantum yield of 1 (0.52) is higher than that of 2 (0.16), which could be attributed to greater π conjugation between the donor and acceptor moieties. A nondoped deep‐blue fluorescent organic light‐emitting diode (OLED) using 1 as the blue emitter displays high performance, with a maximum current efficiency of 2.2 cd A−1 and a maximum external efficiency of 2.9 % at the CIE coordinates of (0.17, 0.07) that are very close to the National Television System Committee’s blue standard (0.15, 0.07). Electrophosphorescent devices using the two compounds as host materials for green and red phosphor emitters show high efficiencies. The best performance of a green phosphorescent device was achieved using 2 as the host, with a maximum current efficiency of 64.3 cd A−1 and a maximum power efficiency of 68.3 lm W−1; whereas the best performance of a red phosphorescent device was achieved using 1 as the host, with a maximum current efficiency of 11.5 cd A−1, and a maximum power efficiency of 9.8 lm W−1. The relationship between the molecular structures and optoelectronic properties are discussed.  相似文献   

6.
lsophorone-based red fluorescent compound 3-(dicyanomethy-lene ) -5, 5-dimethyi- 1- [ 2- ( N-ethyl-3-carbazyi ) ethylene ] cyciohe-xene (DCDCC) was synthesized for use in organic Hght-emit-ring diodes (OLEDs). DCDCC was characterized by narrow emission in photoluminescence with full.width at half-maximum of only 50 nm in solution and in thin solid film of 70 nm width. devices with configuration of ITO/NPB/Alq3:DCDCC/Alq3/Mg: Ag were fabricated utilizing DCDCC as dopant emitter. An efficient red emission peaked at 612 nm was obtained for the device with 1% (wt.%) DCDCC in Alq3. The maximum luminance and current efficiency were as high as 3700 cd/m^2 at 14 V and 1.25 cd/A at 150 mA/cm^2, respective-ly.  相似文献   

7.
A novel oligothiophene derivative containing the triphenylamine moiety with high glass transition temperature (Tg; 135 °C), 5,5′‐{bis[4‐di(4‐thiophenyl)amino]phenyl}‐2,2′‐bithiophene (TTPA‐dimer) was synthesized by the dimerization of tris[4‐(2‐thienyl)phenyl]amine (TTPA) with a palladium catalysis. Some types of electroluminescent (EL) devices that use the amorphous material for a hole‐ and an electron‐transporting with an emitting layer were fabricated. These devices emitted a bright green‐yellowish light (λemi; around 510 nm) with a small full width at half maximum (FWHM) rather than that of Alq3. The single layer EL device showed a maximum luminance of 221 cd/m2 at 8 V (0.06 lm/W at 100 cd/m2). On the other hand, the double layer (TTPA‐dimer/Alq3) EL device that used Alq3 as the electron transport material was increased up to 10830 cd/m2 at 12 V (0.89 lm/W at 300 cd/m2) and with a lower turn‐on voltage (3.2 V at 0.1 cd/m2) than other types of EL devices. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Qiushu Zhang 《中国化学》2010,28(8):1482-1486
We demonstrate polymer light‐emitting diodes (LEDs) based on poly[9,9‐di‐(2′‐ethylhexyl)fluorenyl‐2,7‐diyl] with end capper dimethylphenyl or N,N‐bis(4‐methylphenyl)‐N‐phenylamine. The introduction of end‐capper groups increased the device luminance and efficiency, while greatly depressing the green emission. For the devices constructed of poly[9,9‐di‐(2′‐ethylhexyl)fluorenyl‐2,7‐diyl] end capped with dimethylphenyl, the maximum luminance reached 381 cd/m2 at 122 mA/cm2. The maximum external quantum efficiency was 0.16% at 117 mA/cm2, which is more than five times higher than that of the non‐end‐capped polymer LEDs. The electroluminescence (EL) maximum was at 485 nm, blue shifted by 52 nm with respect to that of the non‐end‐capped polyfluorene devices. It is proposed that efficient hole trapping at end capper and increased resistance of polyfluorene to oxidation are responsible for the improved device performance and color stability.  相似文献   

9.
For the purpose of making hyperbranched polymer (Hb‐Ps)‐based red, green, blue, and white polymer light‐emitting diodes (PLEDs), three Hb‐Ps Hb‐ terfluorene ( Hb‐TF ), Hb ‐4,7‐bis(9,9′‐dioctylfluoren‐2‐yl)‐2,1,3‐benzothiodiazole ( Hb‐BFBT ), and Hb‐ 4,7‐bis[(9,9′‐dioctylfluoren‐2‐yl)‐thien‐2‐yl]‐2,1,3‐benzothiodiazole ( Hb‐BFTBT ) were synthesized via [2+2+2] polycyclotrimerization of the corresponding diacetylene‐functionalized monomers. All the synthesized polymers showed excellent thermal stability with degradation temperature higher than 355 °C and glass transition temperatures higher than 50 °C. Photoluminance (PL) and electroluminance (EL) spectra of the polymers indicate that Hb‐TF , Hb‐BFBT , and Hb‐BFTBT are blue‐green, green, and red emitting materials. Maximum brightness of the double‐layer devices of Hb‐TF , Hb‐BFBT , and Hb‐BFTBT with the device configuration of indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/light‐emitting polymer/CsF/Al are 48, 42, and 29 cd/m2; the maximum luminance efficiency of the devices are 0.01, 0.02, and 0.01 cd/A. By using host–guest doped system, saturated red electrophosphorescent devices with a maximum luminance efficiency of 1.61 cd/A were obtained when Hb‐TF was used as a host material doped with Os(fptz)2(PPh2Me2)2 as a guest material. A maximum luminance efficiency of 3.39 cd/A of a red polymer light‐emitting device was also reached when Hb‐BFTBT was used as the guest in the PFO (Poly(9,9‐dioctylfluorene)) host layer. In addition, a series of efficient white devices were, which show low turn‐on voltage (3.5 V) with highest luminance efficiency of 4.98 cd/A, maximum brightness of 1185 cd/m2, and the Commission Internationale de l'Eclairage (CIE) coordinates close to ideal white emission (0.33, 0.33), were prepared by using BFBT as auxiliary dopant. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
利用2,3-二苯基喹喔啉和水合三氯化铱(IrCl3?H2O)反应, 合成了一种新型喹喔啉铱的配合物[Ir(DPQ)2(acac)], 通过元素分析, 1H NMR和HRMS对配合物结构进行了表征, 结果显示得到的是目标化合物. 利用紫外光谱和荧光光谱对配合物的吸收光谱和光致发光光谱进行了研究. 利用该材料作为磷光材料制备了结构为[ITO/NPB(30 nm)/NPB∶7% Ir(DPQ)2(acac)(25 nm)/PBD (10 nm)/Alq3 (30 nm)/Mg∶Ag (10∶1)(120 nm)/Ag(10 nm)] 的电致发光器件, 研究了其电致发光光谱. 结果表明, 配合物[Ir(DPQ)2(acac)]在476和625 nm处存在单重态1MLCT(金属到配体的电荷跃迁)和三重态3MLCT的吸收峰; 发光光谱结果显示, 在660 nm处有较强的金属配合物三重态的磷光发射; 电致发光光谱显示, 该器件的启动电压是4.25 V, 器件的最大亮度为4910 cd/m2, 外量子效率为5.14%, 器件的流明效率为1.12 lm/W, 是一种新型红色磷光材料.  相似文献   

11.
A new class of four‐coordinate donor‐acceptor fluoroboron‐containing thermally activated delayed fluorescence (TADF) compounds bearing a tridentate 2,2′‐(pyridine‐2,6‐diyl)diphenolate (dppy) ligand has been successfully designed and synthesized. Upon varying the donor moieties from carbazole to 10H‐spiro[acridine‐9,9′‐fluorene] to 9,9‐dimethyl‐9,10‐dihydroacridine, these boron derivatives exhibit a wide range of emission colors spanning from blue to yellow with a large spectral shift of 2746 cm?1, with high PLQYs of up to 96 % in the doped thin film. Notably, vacuum‐deposited organic light‐emitting devices (OLEDs) made with these boron compounds demonstrate high performances with the best current efficiencies of 55.7 cd A?1, power efficiencies of 58.4 lm W?1 and external quantum efficiencies of 18.0 %. More importantly, long operational stabilities of the green‐emitting OLEDs based on 2 with half‐lifetimes of up to 12 733 hours at an initial luminance of 100 cd m?2 have been realized. This work represents for the first time the design and synthesis of tridentate dppy‐chelating four‐coordinate boron TADF compounds for long operational stabilities, suggesting great promises for the development of stable boron‐containing TADF emitters.  相似文献   

12.
A carbazole‐based diaza[7]helicene, 2,12‐dihexyl‐2,12‐diaza[7]helicene ( 1 ), was synthesized by a photochemical synthesis and its use as a deep‐blue dopant emitter in an organic light‐emitting diode (OLED) was examined. Compound 1 exhibited good solubility and excellent thermal stability with a high decomposition temperature (Td=372.1 °C) and a high glass‐transition temperature (Tg, up to 203.0 °C). Single‐crystal structural analysis of the crystalline clathrate ( 1 )2 ? cyclohexane along with a theoretical investigation revealed a non‐planar‐fused structure of compound 1 , which prevented the close‐packing of molecules in the solid state and kept the molecule in a good amorphous state, which allowed the optimization of the properties of the OLED. A device with a structure of ITO/NPB (50 nm)/CBP:5 % 1 (30 nm)/BCP (20 nm)/Mg:Ag (100 nm)/Ag (50 nm) showed saturated blue light with Commission Internationale de L’Eclairage (CIE) coordinates of (0.15, 0.10); the maximum luminance efficiency and brightness were 0.22 cd A?1 (0.09 Lm W?1) and 2365 cd m?2, respectively. This new class of helicenes, based on carbazole frameworks, not only opens new possibilities for utilizing helicene derivatives in deep‐blue‐emitting OLEDs but may also have potential applications in many other fields, such as molecular recognition and organic nonlinear optical materials.  相似文献   

13.
We report novel host polymers for a high‐efficiency polymer‐based solution‐processed phosphorescent organic light‐emitting diode with typical blue‐emitting dopant bis(4,6‐difluorophenylpyridinato‐N,C2)iridium(III) picolinate (FIrpic). The host polymers, soluble polynorbornenes with pendant carbazole derivatives, N‐phenyl‐9H‐carbazole ( P1 ), N‐biphenyl‐9H‐carbazole ( P2 ), and 9,9′‐(1,3‐phenylene)bis‐9H‐carbazole (mCP) ( P3 ) are efficiently synthesized by vinyl addition polymerization of norbornene monomers using Pd(II) catalyst in combination with 1‐octene chain transfer agent. The polymers exhibit high thermal stability with high decomposition (Td5 > 410 °C) and glass transition temperatures (Tg ≈ 268 °C). The HOMO (ca. ?5.5 to ?5.7 eV) and LUMO (ca. ?2.0 to ?2.1 eV) levels with the high triplet energy of about 2.7–3.0 eV suggest that the polymers are suitable for a host material for blue emitters. Among the solution‐processed devices that were fabricated based on the emissive layers containing the P1 ? P3 host doped with various concentrations of FIrpic (7–13 wt %), the best device with P3 host exhibits power efficiency of 3.0 lm W?1 and external quantum efficiency of 4.0% at a luminance of 1000 cd m?2 that is outstanding among the polymeric rivals. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
A new class of sky‐blue‐ to green‐emitting carbazolylgold(III) C^C^N complexes containing pyrazole or benzimidazole moieties has been successfully designed and synthesized. Through the judicious choice of the N‐heterocycles in the cyclometalating ligand and the tailor‐made carbazole moieties, maximum photoluminescence quantum yields of 0.52 and 0.39 have been realized in the green‐ and sky‐blue‐emitting complexes, respectively. Solution‐processed and vacuum‐deposited organic light‐emitting devices (OLEDs) based on the benzimidazole‐containing complexes have been prepared. The sky‐blue‐emitting device shows an emission peaking at 484 nm with a narrow full‐width at half‐maximum of 57 nm (2244 cm?1), demonstrating the potential of this class of complexes in the application of OLEDs with high color purity. In addition, high maximum external quantum efficiencies of 12.3 % and a long operational half‐lifetime of over 5300 h at 100 cd m?2 have been achieved in the vacuum‐deposited green‐emitting devices.  相似文献   

15.
An N‐phenylcarbazole‐containing poly(p‐phenylenevinylene) (PPV), poly[(2‐(4′‐carbazol‐9‐yl‐phenyl)‐5‐octyloxy‐1,4‐phenylenevinylene)‐alt‐(2‐(2′‐ethylhexyloxy)‐5‐methoxy‐1,4‐phenylenevinylene)] (Cz‐PPV), was synthesized, and its optical, electrochemical, and electroluminescent properties were studied. The molecular structures of the key intermediates, the carbazole‐containing boronic ester and the dialdehyde monomer, were crystallographically characterized. The polymer was soluble in common organic solvents and exhibited good thermal stability with a 5% weight loss at temperatures above 420 °C in nitrogen. A cyclic voltammogram showed the oxidation peak potentials of both the pendant carbazole group and the PPV main chain, indicating that the hole‐injection ability of the polymer would be improved by the introduction of the carbazole‐functional group. A single‐layer light‐emitting diode (LED) with a simple configuration of indium tin oxide (ITO)/Cz‐PPV (80 nm)/Ca/Al exhibited a bright yellow emission with a brightness of 1560 cd/m2 at a bias of 11 V and a current density of 565 mA/cm2. A double‐layer LED device with the configuration of ITO/poly(3,4‐ethylenedioxy‐2,5‐thiophene):poly (styrenesulfonic acid) (60 nm)/Cz‐PPV (80 nm)/Ca/Al gave a low turn‐on voltage at 3 V and a maximum brightness of 6600 cd/m2 at a bias of 8 V. The maximum electroluminescent efficiency corresponding to the double‐layer device was 1.15 cd/A, 0.42 lm/W, and 0.5%. The desired electroluminescence results demonstrated that the incorporation of hole‐transporting functional groups into the PPVs was effective for enhancing the electroluminescent performance. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5765–5773, 2005  相似文献   

16.
In this paper, the electroluminescent properties of a new partially‐conjugated hyperbranched poly (p‐phenylene vinylene) (HPPV) were studied. The single layer light‐emitting device with HPPV as the emitting layer emits blue‐green light at 496 nm, with a luminance of 160 cd/m2 at 9 V, a turn‐on voltage of 4.3 V and an electroluminescent efficiency of 0.028 cd/A. By doping an electron‐transport material [2‐(4‐biphenylyl)‐5‐phenyl‐1,3,4‐oxadiazole, PBD] into the emitting layer and inserting a thin layer of tris(8‐hydroxy‐quinoline)aluminum (Alq3) as electron transporting/hole blocking layer for the devices, the electroluminescent efficiency of 1.42 cd/A and luminance of 1700 cd/m2 were achieved. The results demonstrate that the devices with the hyperbranched polymers as emitting material can achieve high efficiency through optimization of device structures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
《化学:亚洲杂志》2017,12(23):3069-3076
Typical π–π stacking and aggregation‐caused quenching could be suppressed in the film‐state by the spiro conformation molecular design in the field of organic light‐emitting diodes (OLEDs). Herein, a novel deep‐blue fluorescent material with spiro conformation, 1‐(4‐(tert ‐butyl)phenyl)‐2‐(4‐(10‐phenyl‐10H ‐spiro[acridine‐9,9′‐fluoren]‐2‐yl)phenyl)‐1H ‐phenanthro[9,10‐d ]imidazole ( SAF‐BPI ), was designed and synthesized. The compound consists of spiro‐acridine‐fluorene (SAF) as donor part and phenanthroimidazole (BPI) as acceptor part. Owing to the rigid SAF skeleton, this compound exhibits a high thermal stability with a glass transition temperature (T g) of 198 °C. The compound exhibits bipolar transporting characteristics demonstrated by the single‐carrier devices. The non‐doped OLEDs based on the SAF‐BPI as the emitting layer shows maximum emission at 448 nm, maximum luminance of 2122 cd m−2, maximum current efficiency (CE) of 3.97 cd A−1, and a maximum power efficiency of 2.08 lm W−1. The chromaticity coordinate is stable at (0.15, 0.10) at the voltage of 7–11 V. The device shows a slow efficiency roll‐off with CE of 3.35 and 2.85 cd A−1 at 100 and 1000 cd m−2, respectively.  相似文献   

18.
Five derivatives of 1,4‐bis(2′‐quinolinylethenyl)benzene were prepared through Wittig reaction of a diylide of p‐xylene and two molar equivalents of quinolinyl carbaldehyde. Dyes 1a,b and 2a‐c thus obtained exhibit fluorescence in quantum yields of 0.44–0.78. They are fabricated to light‐emitting diodes in the form of ITO/NPB/CBP/TPBI: dye(5% wt)/Mg: Ag. The devices can be turned on at 6 V, and they displayed blue and green light at intensities up to 5000 cd/m2 at 15 V. The compounds containing methoxy substituents, i.e. 1b and 2b,c , performed more effectively than those without, i.e. 1a and 2a . The former derivatives also showed a red‐shift in their emission spectra with respect to the latter.  相似文献   

19.
In this paper, we describe a bipolar molecular design for small molecule solution‐processed organic light emitting diodes (OLEDs). Combining the rigidity of the conjugated emissive cores and the flexibility of the peripheral alkyl‐linked carbazole groups, two series of highly efficient bipolar RGB (red, green, blue) emitters have been synthesized and characterized. The emissive cores are composed of electron‐withdrawing groups; the carbazole groups endow the materials electron‐donating units. Such bipolar structures are advantageous for the carrier injection and balance. Four peripheral carbazole groups are introduced in T‐series materials (TCDqC, TCSoC, TCBzC, TCNzC), and another four in O‐series materials (OCDqC, OCSoC, OCBzC, OCNzC). With the single‐layer device configuration of ITO/PEDOT:PSS/emitting layer/CsF/Al, two green devices exhibited excellent performance with a maximum luminescence efficiency of over 6.4 cd A?1, and a high maximum luminance of more than 6700 cd m?2. In addition, compared with the T‐series, the luminescence efficiency of blue and red devices based on O‐series materials increased from 1.6 to 2.8 cd A?1 and 0.2 to 1.3 cd A?1, respectively. To our knowledge, the performance of the blue device based on OCSoC is among the best of the blue small‐molecule solution‐processed single‐layer devices reported so far.  相似文献   

20.
Three polyfluorene derivatives which have oxetane‐containing phenyl group at C‐9 position were synthesized via the palladium‐catalyzed Suzuki‐coupling reaction. The synthesized polymers PFB, PFG, and PFR emit blue, green, and red light, respectively. A double‐layer device with the configuration of ITO/PEDOT/polymer/Ca/Al using PFB as the active layer showed a threshold voltage of 5 V, a maximum brightness of 2030 cd/m2, and a maximum current efficiency of 0.35 cd/A. Using PFG as the active layer, the device exhibited a threshold voltage of 6 V, a maximum brightness of 6447 cd/m2, and a maximum current efficiency of 1.27 cd/A. Using PFR as the active layer, the device showed a threshold voltage of 4 V, a maximum brightness of 2135 cd/m2, and a maximum current efficiency of 0.16 cd/A. Better electroluminescent performance was also found based on different design of device structures. Due to photo‐crosslinking property of oxetane groups, the UV‐exposed thin films are insoluble in common organic solvents. A device comprised of blue, green, and red‐emissive pixels was successfully fabricated by spin‐coating and photo‐lithographic processes. In addition, a white light‐emitting device with CIE coordinate of (0.34, 0.33) was achieved by blending PFR into a host material PFB as the active layer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 516–524, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号