首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The o‐dihydroxy‐ ( 2a‐b ), dimethoxy ( 3a‐b ), ethylendioxy‐ ( 4a‐b ) and macrocyclic polyethers ( 4c‐i ) are the initial compounds while the 2,4‐dinitrophenylhydrazone compounds ( 5a‐d, 6a‐i ) represent new derivatives. Novel hydrazone compounds were synthesized from the corresponding cyclic ketones ( 4a‐i ) and 2,4‐dinitrophenylhydrazine in H2SO4/EtOH/H2O solution at room temperature for 1 h. The structures of obtained hydrazone compounds were confirmed by 1H‐NMR, 13C‐NMR, EI‐MS, IR spectra and elemental analysis.  相似文献   

2.
Reaction of hydrogen sulfate of 3,4‐quinolinediyl bis‐sulfides 1a , 2a , 3a , and 4a with isopropyl and cyclohexyl radicals formed from alkyl iodide/hydrogen peroxide/DMSO/Fe++ salt system took place at α‐quinolinyl position and led to the respective mono‐ and dialkyl derivatives 1b‐e , 2b‐e , 3b,c , and 4b,c . Action of sodium methoxide towards isopropyl derivatives 1b,c and 2b,c caused the 1,4‐dithiin ring opening to form (after S‐methylation) derivatives of 3,4′‐ and 3,3′‐diquinolinyl sulfides 6a,b and 7a,b .  相似文献   

3.
The hitherto unknown 5‐(2‐aryl‐2‐oxoethyl)‐4‐oxo‐1,3‐thiazolidines 1a‐l have been synthesized viacycloaddition process between thiourea and/or its derivatives with 3‐aroylpropenoic acids. 1H NMR spectra revealed the presence of 1a‐c as a tautmeric mixture. The presence of the thiazoline tautmers (1a‐c) ′ was confirmed by methylating the tautmeric mixture, to the respective methylated derivatives 2‐N‐methylanilino‐5‐(2‐aryl‐2‐oxoethyl)‐4‐oxo‐1,3‐thiazolines 2a‐c and 1g‐i . Acidic treatment of 1 provided the respective 2‐oxo homologues 3a‐i . When 1a‐d , k were refluxed with DMF, molecular rearrangement was achieved, providing the 4‐oxo‐2‐thioxoimidazolidine isomers 4a‐d , k . Bromination of 4a and 4d in hot acetic acid afforded the respective (E,Z)‐5‐benzoylmethylene derivatives 5a,d which were prepared authentically. Thiation of 1a‐c and 4a‐c gave 5‐aryl‐2,3‐dihydro‐2‐phenyliminothieno[2,3‐d]thiazoles 6a‐c and 1‐phenyl‐5‐aryl‐2,3‐dihydro‐2‐thioxothieno[2,3‐d]imidazoles 7a‐c , respectively. The proposed structures have been confirmed by elemental analysis and spectroscopic data. The selected products showed different antimicrobial effect.  相似文献   

4.
The reaction of 3‐amino‐4,6‐dimethylthieno[2,3‐b]pyridine‐2‐carboxamide (1a) or its N‐aryl derivatives 1b‐d with carbon disulphide gave the pyridothienopyrimidines 2a‐d , whilst when the same reaction was carried out using N1‐arylidene‐3‐amino‐4,6‐dimethylthieno[2,3‐b]pyridine‐2‐carbohydrazides (1e‐h) , pyridothienothiazine 3 was obtained. Also, refluxing of 1b‐d with acetic anhydride afforded oxazinone derivative 4 . Compounds 2a and 2b‐d were also obtained by the treatment of thiazine 3 with ammonium acetate or aromatic amines, respectively. When compound 2a was allowed to react with arylidene malononitriles or ethyl α‐cyanocinnamate, novel pyrido[3″,2″:4′,5′]thieno[3′,2′:4,5]pyrimido[2,1‐b][1,3] thiazines 5a‐c were obtained. Treatment of 2b‐d with bromine in acetic acid furnished the disulphide derivatives 6a‐c . U.V. irradiation of 2b‐d resulted in the formation of pyrido[3″,2″:4′,5′]thieno[3′,2′:4,5]pyrimido[2,1‐b]benzthiazoles 7a‐c . The reaction of 2a‐d with some halocarbonyl compounds afforded the corresponding S‐substituted thiopyrido thienopyrimidines 8a‐j . Compound 8b was readily cyclized into the corresponding thiazolo[3″,2″‐a]‐pyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine 9 upon treatment with conc. sulphuric acid. Heating of 2a,b with hydrazine hydrate in pyridine afforded the hydrazino derivatives 11a,b . Reaction of ester 8c with hydrazine hydrate in ethanol gave acethydrazide 10 . Compounds 10 and 11a,b were used as versatile synthons for other new pyridothienopyrimidines 12–15 as well as [1,2,4] triazolopyridothienopyrimidines 16–19.  相似文献   

5.
A variety of pyrano[2,3‐d]pyrimidine‐5‐one derivatives 5 , 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 6 , 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j have been synthesized from 6‐amino‐4‐(substituted phenyl)‐5‐cyano‐3‐methyl‐1‐phenyl‐1,4‐dihydropyrano[2,3‐c]pyrazole derivatives 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j via cyclization using formic acid and acetic acid. All the newly synthesized compounds have been characterized by IR, 1H NMR, 13C NMR, and elemental analysis. All the synthesized compounds have been screened for antibacterial, antifungal and antitubercular activity. J. Heterocyclic Chem., (2012).  相似文献   

6.
A series of novel benzo[c]phenanthridine derivatives 2a , 2b , 2c , 2d , 2e , 2f , 2g , 2h , 2i , 2j , 2k , 2l , 2m and 3a , 3b , 3c , 3d , 3e , 3f bearing an alkylamino side chain at their 6‐position were synthesized. All of the target compounds were confirmed by 1H NMR, 13C NMR, and HRMS, and some of them were also characterized by IR and 19F NMR. The preliminary bioassays showed that the target compounds displayed fungicidal activities; for example, compound 2l showed 60.0% and 70.0% inhibitive activity against Alternaria solani and Cercospora arachidicola at 50 mg/L, respectively, and some compounds also displayed plant growth‐regulating activities.  相似文献   

7.
In this study, thiazole derivatives containing Schiff bases ( 7a , 7b , 7c , 7d , 7e , 7f , 8a , 8b , 8c , 8d , 8e , 8f , 9a , 9b , 9c , 9d , 9e , 9f ) were synthesized in moderate to high yields (49–94%) using the Hantzsch reaction with thiosemicarbazone derivatives ( 5a , 5b , 5c ) and 2‐bromo‐1‐phenylethanone derivatives ( 6a , 6b , 6c , 6d , 6e , 6f ). The structures of synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses, mass spectroscopy and X‐ray diffraction analysis techniques. Moreover, the synthesized compounds were tested for their in vitro antifungal activity and most of them exhibited moderate to good activity against Fusariumoxysporumf.sp. lycopersici.   相似文献   

8.
In continuation of our previous work, a series of novel thiophene derivatives 4 , 5 , 6 , 8 , 9 , 9a , 9b , 9c , 9d , 9e , 10 , 10a , 10b , 10c , 10d , 10e , 11 , 12 , 13 , 14 , 15 , 16 were synthesized by the reaction of ethyl 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carboxylate ( 1 ) or 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile ( 2 ) with different organic reagents. Fusion of 1 with ethylcyanoacetate or maleic anhydride afforded the corresponding thienooxazinone derivative 4 and N‐thienylmalimide derivative 5 , respectively. Acylation of 1 with chloroacetylchloride afforded the amide 6 , which was cyclized with ammonium thiocyanate to give the corresponding N‐theinylthiazole derivative 8 . On the other hand, reaction of 1 with substituted aroylisothiocyanate derivatives gave the corresponding thiourea derivatives 9a , 9b , 9c , 9d , 9e , which were cyclized by the action of sodium ethoxide to afford the corresponding N‐substituted thiopyrimidine derivatives 10a , 10b , 10c , 10d , 10e . Condensation of 2 with acid anhydrides in refluxing acetic acid afforded the corresponding imide carbonitrile derivatives 11 , 12 , 13 . Similarly, condensation of 1 with the previous acid anhydride yielded the corresponding imide ethyl ester derivatives 14 , 15 , 16 , respectively. The structures of newly synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, MS spectral data, and elemental analysis. The detailed synthesis, spectroscopic data, LD50, and pharmacological activities of the synthesized compounds are reported.  相似文献   

9.
To improve efficiency, processability, and stability, three novel poly‐(p‐phenylene vinylenes) (PPVs) derivatives ( P a , P b , and P c ) with pendent 2,4‐difluorophenyl and fluorenyl moieties were synthesized via Gilch reaction. Their structures were characterized by 1H NMR, 13C NMR, and ELEM. ANAL . Compared with those of PPV and MEH‐PPV, the absolute quantum efficiencies of these polymers showed remarkable improvement (measured at 38.7, 37.2, and 20.3%, respectively), which can be attributed to the presence of twisted multiaryl segments and fluorine atoms. TGA revealed that the inflection temperatures of their thermal decomposition curves were above 400 °C. Double‐layered electroluminescent devices with these polymers as light‐emitting layers [ITO/PEDOT:PSS/Polymer/Ba/Al] showed peak emissions at 493/515, 503, and 600 nm and maximum luminance of 2700, 450, and 4700 cd/m2 for P a , P b , and P c , respectively, with onset voltages of ~4 V. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2500–2508, 2009  相似文献   

10.
The reaction of di(alkyn‐1‐yl)vinylsilanes R1(H2C═CH)Si(C≡C―R)2 (R1 = Me ( 1 ), Ph ( 2 ); R = Bu (a), Ph (b), Me2HSi (c)) at 25°C with 1 equiv. of 9‐borabicyclo[3.3.1]nonane (9‐BBN) affords 1‐silacyclopent‐2‐ene derivatives ( 3a , 3b , 3c , 4a , 4b ), bearing one Si―C≡C―R function readily available for further transformations. These compounds are formed by consecutive 1,2‐hydroboration followed by intramolecular 1,1‐carboboration. Treated with a further equivalent of 9‐BBN in benzene they are converted at relatively high temperature (80–100°C) into 1‐alkenyl‐1‐silacyclopent‐2‐ene derivatives ( 5a , 5b 6a , 6b ) as a result of 1,2‐hydroboration of the Si―C≡C―R function. Protodeborylation of the 9‐BBN‐substituted 1‐silacyclopent‐2‐ene derivatives 3 , 4 , 5 , 6 , using acetic acid in excess, proceeds smoothly to give the novel 1‐silacyclopent‐2‐ene ( 7 , 8 , 9 , 10 ). The solution‐state structural assignment of all new compounds, i.e. di(alkyn‐1‐yl)vinylsilanes and 1‐silacyclopent‐2‐ene derivatives, was carried out using multinuclear magnetic resonance techniques (1H, 13C, 11B, 29Si NMR). The gas phase structures of some examples were calculated and optimized by density functional theory methods (B3LYP/6‐311+G/(d,p) level of theory), and 29Si NMR parameters were calculated (chemical shifts δ29Si and coupling constants nJ(29Si,13C)). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Flash vacuum pyrolysis (FVP) of 1‐acylbenzotriazole phenylhydrazones gave benzonitriles, aniline and 2‐arylbenzimidazole derivatives. Static pyrolysis of the same substrates at 180 °C gave exclusively the corresponding N‐anilino‐2‐arylbenzimidazole derivatives. Pyrolysis of the isomeric 2‐acylbenzotriazole phenylhydrazones gave similar products.  相似文献   

12.
The free radical promoted cationic polymerization cyclohexene oxide (CHO), was achieved by visible light irradiation (λinc = 430–490 nm) of methylene chloride solutions containing thioxanthone‐fluorene carboxylic acid (TX‐FLCOOH) or thioxanthone‐carbazole (TX‐C) and cationic salts, such as diphenyliodonium hexafluorophosphate (Ph2I+PF) or silver hexafluorophosphate (Ag+PF) in the presence of hydrogen donors. A feasible initiation mechanism involves the photogeneration of ketyl radicals by hydrogen abstraction in the first step. Subsequent oxidation of ketyl radicals by the oxidizing salts yields Bronsted acids capable of initiating the polymerization of CHO. In agreement with the proposed mechanism, the polymerization was completely inhibited by 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy and di‐2,6‐di‐tert‐butylpyridine as radical and acid scavengers, respectively. Additionally polymerization efficiency was directly related to the reduction potential of the cationic salts, that is, Ag+PF (E = +0.8 V) was found to be more efficient than Ph2I+PF (E = ?0.2 V). In addition to CHO, vinyl monomers such as isobutyl vinyl ether and N‐vinyl carbazole, and a bisepoxide such as 3,4‐epoxycyclohexyl‐3′,4′‐epoxycyclohexene carboxylate, were polymerized in the presence of TX‐FLCOOH or TX‐C and iodonium salt with high efficiency. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Two polythiophene derivatives with electron‐donating alkylthio side chains, poly[(3‐hexylthio)thiophene] (P3HST) and poly[(3‐hexylthio)thiophene‐alt‐thiophene] (P3HST‐co‐Th) have been synthesized and characterized. Both P3HST and P3HST‐co‐Th show broader absorption peaks than poly(3‐hexylthiophene). Meanwhile, the alkylthio side chains decrease the HOMO energy level of the polymers, which benefits the higher open circuit voltage of the polymer solar cells (PSCs) based on the polymer as donor. PSCs have been fabricated with the polymers as donor and [6,6]‐phenyl C61 butyric acid methyl ester as acceptor (1: 1, w/w). The devices based on P3HST and P3HST‐co‐Th show an open circuit voltage of 0.63 V, and a power conversion efficiency of 0.34% and 0.5%, respectively, under the illumination of AM1.5, 80 mW · cm−2.

  相似文献   


14.
Mix and match : The pentagonal [Mo6O21]n? polyoxomolybdate building block assembles with other sources of Mo, V, and Sb ions to form an orthorhombic Mo‐V‐Sb oxide. The first single‐crystal X‐ray analysis of an orthorhombic Mo–V‐based oxide, a promising catalyst for light alkane selective oxidation known as the “M1 phase”, revealed the structure of the compound.

  相似文献   


15.
Carbazole ( 1 ) undergoes electrophilic aromatic substitution with various iodinating reagents. Although, 3‐iodocarbazole ( 1b ) and 3,6‐diiodocarbazole ( 1d ) obtained by iodination of carbazole were isolated and characterized sometime ago, 1‐iodocarbazole ( 1a ), 1,6‐diiodocarbazole ( 1c ) and 1,3,6‐triiodocarbazole ( 1e ) had never been isolated from the reaction mixture. The preparation and subsequent isolation and characterization of 1a, 1b, 1c, 1d and 1e are reported (mp, tr, Rf, 1H‐nmr, 13C‐nmr and ms). As iodinating reagents, NaIO4/I2 and NaIO4/KI mixtures in (i) ethanol doped with catalytical amount of sulfuric acid and in (ii) acetic acid, and N‐odosuccinimide and N‐iodosuccinimide‐silica gel in dichloromethane and in chloroform have been used and their uses have been compared. The iodination reaction of different carbazole derivatives such as 2‐acetoxycarbazole ( 2 ), 3‐bromocarbazole (3) and 3‐nitrocarbazole ( 4 ) was also studied and the corresponding iododerivatives, 2a, 2b, 2c, 3a, 3b, 4a and 4b , are described for the first time. Semiempirical PM3 calculations have been performed in order to predict reactivity of carbazole ( 1 ), substituted carbazoles (2‐4) and iodocarbazoles ( 1a‐1e, 2a‐2c, 3a‐3b, 4a and 4b ) (Scheme 1). Theoretical and experimental results are discussed briefly.  相似文献   

16.
Methane sulfonamide derivatives of 3‐amino‐2‐thioxo‐2,3‐dihydrothieno[2,3‐d]pyimidin‐4(1H)‐one, potential selective COX‐2 inhibitors, were synthesized and their structural elucidation is here reported. Some derivatives, at 10 μM concentration, showed a significant percentage of inhibition in some in vitro experiments.  相似文献   

17.
Nine new 4‐substituted 2‐phenylimidazole derivatives have been synthesized by aldol condensation of 2‐phenylimidazole‐4‐carbaldehyde with various active methylene compounds. In case of non‐symmetric active methylene compound used, the stereospecific formation of only one cis‐trans isomer has been observed. The predominant formation of products with bulkier substituents standing opposite on double bond formed by aldol condensation has been proved. cis‐trans Isomerism of three unsymmetrically substituted products has been determined by 1H coupled 13C NMR experiments. 3‐[(2‐Phenylimidazol‐4‐yl)methylene]pentane‐2,4‐dione has been characterized by single crystal X‐ray structural analysis as well. Selected bond lengths and angles have proved the expected large mesomerical stabilisation in the molecule. The hydrogen bond in crystal phase has been observed.  相似文献   

18.
Two new low‐bandgap block copolymers derived from dithienylbenzothiadiazole (DTBT) and different electron‐rich functional groups (dioctoxyl benzene and N‐octyl‐diphenylamine), poly(1,4‐dioctoxyl‐2,5‐divinylbenzene‐co‐4,7‐dithiophene‐2′‐yl‐2,1,3‐benzothiadiazole) (PPV‐DTBT), poly(3,8‐divinyl‐N‐octyl‐diphenylamine‐co‐4,7‐dithiophene‐2′‐yl‐2,1,3‐benzothiadiazole) (PDPAV‐DTBT), were synthesized by Heck cross‐coupling polymerization. PPV‐DTBT and PDPAV‐DTBT are easily soluble in common organic solvents such as o‐dichlorobenzene and chloroform. DSC and TGA results indicate that these copolymers possess good thermal stabilities. PPV‐DTBT and PDPAV‐DTBT films exhibit broad absorption bands at 300–765 nm (with an optical bandgap of 1.62 eV) and 300–733 nm (with an optical bandgap of 1.69 eV), respectively. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of PPV‐DTBT were estimated by cyclic voltammetry to be −5.43 and −3.74 eV, respectively, and the HOMO and LUMO of PDPAV‐DTBT were −5.37 and −3.7 eV, respectively. Preliminary photovoltaic cells based on the composite structure of ITO/PEDOT: PSS/PPV‐DTBT:PCBM (1: 2, w/w)/Al showed an open‐circuit voltage of 0.75 V, a power conversion efficiency of 0.6%, and a short circuit current of 1.7 mA · cm−2.

  相似文献   


19.
E‐3‐(N,N‐Dimethylamino)‐1‐(3‐methylthiazolo[3,2‐a]benzimidazol‐2‐yl)prop‐2‐en‐1‐one ( 2 ) was synthesized by the reaction of 1‐(3‐methylthiazolo[3,2‐a]benzimidazol‐2‐yl)ethanone ( 1 ) with dimethylformamide‐dimethylacetal. The reaction of 2 with 5‐amino‐3‐phenyl‐1H‐pyrazole ( 4a ) or 3‐amino‐1,2,4‐(1H)‐triazole ( 4b ) furnished pyrazolo[1,5‐a]pyrimidine and 1,2,4‐triazolo[1,5‐a]pyrimidine derivatives 6a and 6b , while the reaction of enaminone 2 with 6‐aminopyrimidine derivatives 7a,b afforded pyrido[2,3‐d]pyrimidine derivatives 9a,b , respectively. The diazonium salts 11a or 11b coupled with compound 2 to yield the pyrazolo[5,1‐c]‐1,2,4‐triazine and 1,2,4‐triazolo[5,1‐c]‐1,2,4‐triazine derivatives 13a and 13b . Some of the newly synthesized compounds exhibited a moderate effect against some bacterial and fungal species.  相似文献   

20.
Ni(0)‐complex promoted dehalogenation polymerization of 1,2‐bis(4‐bromophenyl)ethylene derivatives gave poly(p‐biphenylene vinylene) type polymers, [—C6H2R—CR2 = CR2—C6H2R—)n (P(R1,H) and P(H,R2) ], having substituents (R1 = Me, Et, CHMe2, and n‐C8H17, R2 = Me, Et, n‐C6H13, n‐C11H23, and Ph) at the benzene ring or vinylene group in 90–99% yields. The polymers were soluble in organic solvents such as CHCl3, dimethylformamide, and tetrahydrofuran, and gave Mn of 2.4–5.3 × 103 in gel permeation chromatography analysis. The absorption peak of the polymers appeared at a longer wavelength than that of the corresponding monomers by about 30 nm due to the expansion of the π‐conjugation system. The polymers were photoluminescent in solutions and in their films, emitting blue or green light. P(R1,H)s gave higher quantum yields (Φ = 0.35–0.51) than P(H,R2) s in CHCl3. P(H,R2) s showed a large Stokes shift (9600–13,500 cm−1) in their photoluminescence. Single‐layer and multilayer light emitting diodes using vacuum deposited thin film of P(H,Ph) were prepared. Polymers with long alkyl substituents formed an ordered structure in the solid state as judged from their XRD patterns. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1493–1504, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号