首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
庞明杨  常宏宏  冯璋  张娟 《有机化学》2023,(4):1271-1291
吲哚啉类化合物广泛存在于天然产物、药物和生物活性分子中,其结构多样性构建具有重要的意义.目前,吲哚的去芳构化转化已成为构建螺环、稠环、多取代吲哚啉类化合物的原子和步骤经济性途径.近年来,吲哚的去芳构化反应得到了不断发展,但对于C(2)=C(3)环内烯烃的串联去芳构化转化研究仍有较大的发展空间.基于此,聚焦迁移插入与自由基串联策略,详细总结了Pd、Ni、Co和Cu过渡金属催化的吲哚串联去芳构化转化,并探讨了相关的反应机理以及发展趋势.  相似文献   

2.
正五元螺环氧化吲哚骨架广泛存在于天然产物及药物活性分子当中,但其结构复杂且在合成过程中立体选择性难以控制,因此成为有机化学家研究的热点与难点.近年来,有机催化的串联反应得到了蓬勃发展,逐渐成为高效合成具有复杂骨架化合物的强有力策略.复旦大学化学系孙强盛、孙兴文等从一些简单易得的原料出发,在低加载量  相似文献   

3.
李欢  崔秀灵 《有机化学》2020,(2):543-544
螺环化合物因其在天然产物和药物分子中的广泛分布而备受化学家的青睐(图1),因此开发高效构筑含有螺环骨架的复杂分子的方法引起了合成化学家的广泛关注.基于金属催化C—H键活化反应从简单起始原料出发,以较短的合成步骤得到一些重要的杂环分子,被证明是一种通用且便捷的路径.同时,过渡金属催化去芳构化反应被认为是将平面芳香环直接转化为具有三维螺环结构的最有效、最直接的策略之一[1].  相似文献   

4.
在过去的几十年中,氮宾催化转化作为一类直接构建C—N键的高效反应得到了飞速发展,并被广泛应用于含氮杂环化合物的合成.虽然已有多种类型的氮宾前体被报道,并通过各类催化转化反应在构建结构多样性杂环化合物分子中起到了至关重要的作用,然而,氮宾的反应类型还是局限于胺化反应、氮杂环丙烷化反应、磺化反应等有限的几类反应.基于氮宾前体、催化策略(或者催化剂)以及复杂分子合成的相关综述已有很多报道,这篇综述聚焦氮宾与炔烃的加成反应,主要是氮宾/炔烃复分解串联反应.这类反应可以快速合成具有结构多样性的多环、稠环和螺环类含氮杂环类化合物.  相似文献   

5.
螺二萘是一类由两个萘环通过螺缩酮或联二萘醚形式连在一起并高度氧化的天然产物,它们结构新颖复杂、手性中心多,又具有广泛的生物活性,成为近年来合成化学家研究的热门课题.结合本课题组近年来在该领域的研究工作,系统综述了自2010年以来螺二萘类天然产物化学研究取得的新进展,包括新发现的62个天然产物结构、螺二萘类化合物的合成、生物合成途径、生物活性以及结构-活性关系等,旨在进一步推进我国天然产物化学及先导结构优化等在新医药、新农药创制方面的研究工作.  相似文献   

6.
3-异硫氰酸酯氧化吲哚是一类高活性的新型反应试剂,已经被广泛地应用于串联反应中,并用于结构多样的手性螺环氧化吲哚骨架的构建.简单综述了近六年来3-异硫氰酸酯氧化吲哚参与的几类串联环化反应的最新研究进展,主要介绍各反应的特点、活化模式及合成应用,并展望它的发展前景.  相似文献   

7.
含吲哚骨架衍生物因其具有多样的生物活性,广泛应用于生物活性分子的合成与修饰,特别是在药物化学、农药化学领域中.近年来,高效的吲哚环合成与后官能化反应己成为热门的研究主题,例如吲哚的不对称去芳构化反应构建螺环衍生物.不饱和烃的自由基串联反应一直是有机化学的一个重要研究分支,含吲哚母体的不饱和烃串联环化反应已经成为吲哚骨架...  相似文献   

8.
螺吡咯啉吲哚酮化合物含有两种重要氮杂环,由于其独特的结构骨架和存在于天然产物而被广泛关注.吲哚酮的3位与其它环状化合物以螺环形式结合的结构特点是该结构具有潜在药物活性和合成价值的基础,例如抗癌和抗菌活性,以及在合成新配体和有机催化剂上的应用.目前,尽管合成螺吲哚酮的策略已有1,3-偶极环加成、亲核加成及还原环化等,但是发展简单高效的构建螺吲哚酮化合物的方法仍具有很大的吸引力.烯基叠氮同时含有叠氮和烯基两个单元,被广泛应用于构建氮杂环.另一方面,重氮化合物被广泛用作偶联环化合成的底物.基于在叠氮化学和杂环合成方面的工作,我们设想利用3-重氮吲哚-2-酮和烯基氮的环化反应构建螺吲哚酮化合物.文献中有关烯基叠氮和重氮化合物反应的报道较少,主要涉及铑催化的环丙烷化和铜催化的环戊烯合成,在这些反应中烯基叠氮作为二元合成子参与反应,而其它类型的反应鲜有报道,因此我们设想利用烯基叠氮作为三元合成子来参与反应成环.在我们开展工作的同时, Katukojvala小组率先发表了铑催化的重氮烯和烯基叠氮的环化反应构建1-吡咯啉.本文报道了3-重氮吲哚酮和烯基叠氮在铑催化下发生[1+1+3]环化,构建一系列螺吡咯啉吲哚酮化合物.研究从反应条件优化开始,通过对催化剂、原料比、溶剂和温度等参数的筛选,确定了最佳反应条件为1a/2a(1/7), Rh_2(TFA)_4(2.5mol%), 1,2-二氯乙烷(0.1mol/L), 60°C.在标准条件下完成了21个不同基团取代的螺吡咯啉吲哚酮化合物的合成,最高收率可达91%,证实了该反应的普适性.当重氮底物的N原子上不含取代基或取代基为甲基、苄基、苯基、苯甲酰基和磺酰基时,反应均可以顺利发生,其中苯甲酰基和对甲苯磺酰基取代的底物的反应可取得90%以上的收率.对于重氮和烯基叠氮底物的苯环上含有卤素、甲基和甲氧基等取代基时,反应同样可以顺利进行,以中等收率得到对应产物,电子效应对反应效果影响不大,而存在位阻效应时反应收率略有降低.当降低反应温度或缩短反应时间,可以从反应体系中同时分离得到螺吡咯啉吲哚酮和重氮底物3位乙烯基化的产物.进一步实验表明, 3-烯基吲哚酮可以在标准条件下与烯基叠氮反应,以中等收率得到模板产物.该对照实验表明3-烯基吲哚酮是反应过程中的关键中间体.该反应条件温和,简单高效,底物适用范围广,为构建具有潜在生物活性的螺吲哚酮骨架提供了新的选择.  相似文献   

9.
通过含有吲哚底物的分子内氧化偶联反应,成功地构建了Communesin家族生物碱的螺吲哚啉季碳中心,从而完成了(-)-Communesins A,B和F的对映选择性合成.接下来我们发展了分子内氧化偶联/缩合串联反应策略,得到了天然产物(-)-Vincorine的核心四环骨架,然后再经过五步转化完成了Vincorine的全合成.从药物化学角度来看,分子内氧化偶联/缩合串联提供了一个快速方便地合成含有多环吲哚啉骨架的方法.采用相同的串联反应策略,我们分别从色胺衍生的β-酮酸酰胺和丙二酸二酰胺出发,一步构建了多环螺吲哚啉和多环吲哚啉并吡咯环骨架分子.  相似文献   

10.
报道了α-羟基芳基酮和β,γ-不饱和-α-酮酰胺发生的Michael/半缩酮化和傅-克(Friedel-Crafts)反应的两步一锅反应.该方法利用不包含氧化吲哚和四氢呋喃结构的链状底物,高效构建出包含螺碳原子、氧化吲哚环和四氢呋喃环的四氢呋喃螺氧化吲哚衍生物.  相似文献   

11.
廖富民  杜溢  周锋  周剑 《化学学报》2018,76(11):862-868
研究报道了Au(I)/手性叔胺串联催化实现的一锅法不对称反应,实现从重氮氧化吲哚和氟代烯醇硅醚出发构建螺环季碳氧化吲哚.反应的第一步是3.0 mol% IPrAuBF4催化的重氮氧化吲哚与单氟烯醇硅醚的交叉偶联反应,现场产生N-Ac保护的3-烯基氧化吲哚在手性叔胺-四方酸C1的催化下与N-Ts邻氨基查尔酮再发生不对称Michael/Michael反应,以中等到良好的产率以及对映选择性,>20:1的非对映选择性得到螺环季碳氧化吲哚.反应的关键一步是Au(I)催化的给体-受体类重氮化合物与三取代单氟烯醇硅醚的成烯化反应,高效构建三取代烯烃.  相似文献   

12.
色满螺哌啶是一类特殊的三环骨架,其通过结构修饰可发展一系列衍生物,从而表现出广泛的生物活性,如抗肿瘤、抗菌、抗疟、抗肥胖、抗炎、抗氧化以及抗精神病等。因此,色满螺哌啶衍生物在有机合成和医药研发领域中发挥了重要的作用。本文主要介绍在色满的C2位和哌啶环的C4′位稠合而成的色满螺哌啶类衍生物,包括螺[色满-2,4′-哌啶]类、螺[色满-2,4′-哌啶]-4(3H)-酮类、螺[色烯-2,4′-哌啶]类和螺[苯并[b][1,4]噁氮杂?-2,4′-哌啶类化合物等,简述这四类衍生物的经典合成方法,并重点对其生物活性研究进展进行评述。  相似文献   

13.
正J.Am.Chem.Soc.2017,139,7697~7700吲哚是天然产物中广泛存在的杂环结构,发展构建吲哚骨架的手性多环化合物的方法一直备受关注.过渡金属催化的分子内不对称环丙烷化反应能够从简单的线性底物合成具有复杂稠环结构的手性分子.人们已经成功将过渡金属催化吲哚的非对映选择性分子内环丙烷化反应应用于多种吲哚生物碱的高效合成,然而这类反应的对映选择性  相似文献   

14.
报道了在无催化剂、无溶剂条件下,靛红、丙二腈和1,3-二羰基化合物在80℃反应温度下,通过"一锅煮"三组分反应合成了螺氧化吲哚衍生物-该法具有反应条件温和、操作简单、产率较高和对环境友好等优点.  相似文献   

15.
关于含三个手性中心的螺环氧化吲哚γ-内酯的不对称合成鲜有报道.丙醛和氧化吲哚烯烃首先经有机催化进行不对称Michael加成反应;随后,在水/油两相条件下,Michael加成物经H_2O_2/K_2CO_3体系调节,进行α-羟基化/半缩醛化的串联反应;最后经氯铬酸吡啶(PCC)氧化,得到新颖的螺环氧化吲哚α-甲基仲康酸酯化合物.该合成策略具有条件温和、收率高(91%~98%)、对映选择性优秀(87%~95%)的特点,为手性多取代的螺环氧化吲哚γ-内酯的合成提供了一种简易的新方法.所有新产物均通过核磁共振谱和高分辨质谱对其结构进行确证.  相似文献   

16.
三氟甲磺酸(Tf OH)可以用于催化取代环丙基醇与磺酰胺经分子间串联合成四氢吡咯衍生物的反应.在100℃以及10 mol%Tf OH作为催化剂作用下,可获得产率为16%~83%的四氢吡咯衍生物目标产物.该反应在优化条件下能够适用于各种类型的取代环丙基醇和磺酰胺类化合物,例如芳环上带有吸电子基团、给电子基团和具有位阻效应的基团的环丙基醇,含有吸电子以及给电子基团的磺酰胺类化合物.相对便宜、容易获得的Tf OH是一种有效的替代金属催化合成四氢吡咯的试剂.  相似文献   

17.
烯丙醇类化合物是非常重要的有机合成砌块.近年来,自由基或阳离子对烯丙醇类化合物的加成引发的1,2-碳迁移反应迅速发展,被认为是合成含α-季碳中心的β-羰基化合物最有效的策略之一.目前,烯丙醇的官能团化/1,2-碳迁移反应取得了很好的成果,各种官能团化反应,比如卤化、三氟甲基化、硫化、膦化和芳基化等,已经顺利实现.但是,烯丙醇类化合物的胺化/1,2-碳迁移串联反应研究较少.这可能是由于竞争的亲核胺化反应存在导致的.因此,发展烯丙醇类化合物的胺化串联反应值得期待.我们及其他课题组以N-氟代双苯磺酰亚胺(NFSI)作为有效的自由基氮源,实现了烯烃或炔烃的自由基胺化官能团化反应.研究表明,在铜催化温和条件下即可生成金属稳定的氮中心自由基物种.据此,我们认为,在温和条件下有效产生氮中心自由基是实现烯丙醇自由基胺化/1,2-碳迁移串联反应的关键.在前期工作基础上,本文利用NFSI及其衍生物作为有效的自由基胺化试剂,实现了铜催化烯丙醇类化合物的自由基胺化/1,2-碳迁移串联反应,直接构建重要的含α-季碳中心的β-胺基酮骨架.本文合成了24个不同官能团取代的β-胺基酮衍生物.反应中芳环上取代基的电子效应和空间效应表现并不明显.当芳基对位连有卤素、烷氧基、芳基、烷基时,或者邻位和间位甲基取代的1-(1-芳基烯基)环丁醇均可以与NFSI顺利反应,以中等至较高的产率得到相应的含α-季碳中心的β-胺基酮.氧杂环丁醇、取代的环丁醇类化合物,5元、6元及非环状的苯基烯丙醇类化合物均适用于该反应,生成相应的目标化合物.同时,我们也扩展了胺化试剂的范围,除NFSI衍生物外,单取代的NFHSO2Ph类型氮源也可以有效发生自由基胺化/1,2-碳迁移串联反应,生成目标产物.另外,扩大反应物的量至5 mmol,反应不受影响,仍能以90%的产率生成β-胺基酮衍生物.最后,通过控制实验捕捉到反应中生成的苄基自由基中间体,表明该反应经历氮中心自由基对烯丙醇烯烃双键的区域选择性加成引发的1,2-碳迁移串联反应.总之,本文以N-F试剂作为自由基胺化试剂,利用铜催化体系发展了烯丙醇类化合物的自由基胺化/1,2-碳迁移串联反应,一步合成了重要的β-胺基酮类化合物.该反应条件温和,底物适用范围宽泛,官能团兼容性较好,合成了一系列链状、环状及螺环的含有α-季碳中心的β-胺基酮衍生物.据我们所知,这是首例将NHFSO_2Ph类型N-F试剂作为自由基氮源的反应.  相似文献   

18.
作为一类重要的碳环化合物,茚、螺环茚及其衍生物常见于各种天然产物骨架结构中,并作为合成中间体广泛地应用于材料、医药、有机不对称合成等领域.在路易斯酸TiCl_4或AlCl_3作用下,二苯甲醇或芳基取代环醇等苄醇通过生成碳正离子中间体,与炔烃进行环化反应高效合成多种茚及螺环茚.该反应仅需30 min,反应过程中完成了2个新C—C键的构建,对具有各种取代基的炔烃均有较好的适用性.芳基取代的环丁醇、环己醇、环庚醇、环辛醇以及环十二醇都可以适用于该方法,多样性地构建多种有合成价值的螺环骨架.该方法具有操作简便、反应时间短、条件温和等优点.  相似文献   

19.
正Angew.Chem.Int.Ed.2014,53,4680~4684二氢吲哚[2,3]并杂环作为关键母核结构单元广泛存在于具有生理活性的天然产物以及手性药物分子中,发展简洁、高效的构建二氢吲哚[2,3]并杂环骨架的合成方法也受到了广泛的关注.其中,基于吲哚的催化不对称C(2),C(3)-分子内环化反应已经成为构建手性二氢吲哚[2,3]并杂环的最高效的方法之一.利用简便易得的吲哚衍生物与合成子发生分子间的C(2),C(3)-环化反应,虽然更加具有吸引力且更易于获得结构复杂多样的手性二氢吲哚[2,3]并杂环衍  相似文献   

20.
在低共熔溶剂氯化胆碱/草酸催化作用下,由醛、吲哚和6,10-二氧杂螺[4.5]十烷-7,9-二酮三组分多米诺Knoevenagel-Michael反应合成了一系列新型螺环吲哚衍生物,产率为70%~97%.该方法条件温和,操作简单,反应时间短,对环境友好等优点,且催化剂廉价易得.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号