首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 4‐tert‐butylphenylcarbamates of cellulose and amylose bearing a small amount of 3‐(triethoxysilyl)propyl residues were synthesized by a one‐pot process and efficiently immobilized onto a silica gel through intermolecular polycondensation of the triethoxysilyl groups. The obtained chiral packing materials (CPMs) were evaluated by HPLC. The polysaccharide derivatives containing about 1–2% of the 3‐(triethoxysilyl)propyl residue were efficiently immobilized with a high chiral recognition ability. The immobilized CPMs could be used with the eluents containing chloroform and tetrahydrofuran (THF), which cannot be used with the conventional coated‐type CPMs. By using these eluents, the chiral recognition for many racemates was improved.  相似文献   

2.
The 3,5-dichlorophenylcarbamates (2) of cellulose bearing a small amount of 3-(triethoxysilyl)propyl residues were synthesized by a one-pot process and immobilized onto a silica gel through intermolecular polycondensation of the triethoxysilyl groups. The obtained cellulose derivatives were characterized by (1) H NMR and elemental analysis (EA), and their recognition abilities were evaluated by high-performance liquid chromatography (HPLC). The cellulose derivatives containing about 1-5% of the 3-(triethoxysilyl)propyl residue were efficiently immobilized with a high chiral recognition ability. The immobilized chiral packing materials (CPMs) could be used with the eluents containing chloroform and tetrahydrofuran (THF), which cannot be used with the conventional coated-type chiral packing materials. By using these eluents, the chiral recognition for many racemates was improved.  相似文献   

3.
The 3,5‐dimethylphenylcarbamates of cellulose and amylose were effectively immobilized onto plain silica gels as chiral packing materials (CPMs) for HPLC by means of intermolecular polycondensation of triethoxysilyl groups introduced with (3‐glycidoxypropyl)triethoxysilane. The immobilization and chiral recognition abilities of the obtained CPMs prepared with different amounts of (3‐glycidoxypropyl)triethoxysilane were investigated. In addition, the solvent compatibilities of the immobilized‐type CPMs were examined with eluents containing chloroform and THF. When these eluents were used, for most of the tested racemates, the chiral resolving abilities of the obtained CPMs were improved.  相似文献   

4.
Cellulose 3,5-dimethylphenylcarbamate was successfully immobilized onto bare silica gel for HPLC through the intermolecular polycondensation of triethoxysilyl groups, which were introduced onto the cellulose derivative via epoxide ring-opening reaction under acidic conditions. The immobilized-type chiral packing material (CPM) exhibited high chiral recognition ability and could be used with various eluents, which are incompatible with the conventional CPMs prepared by coating the derivative onto silica gel.  相似文献   

5.
在强酸性条件下, 以三嵌段聚醚P123为模板, 合成了孔径大且粒径均匀的SBA-15介孔二氧化硅微球. 将含有少量三乙氧硅丙基氨基甲酸酯残基的纤维素-三(3,5-二甲基苯基氨基甲酸酯)通过分子间缩聚作用固载到氨丙基化的SBA-15微球上, 制得手性固定相; 采用常规和非常规的流动相模式, 对一些芳香醇的消旋体进行了手性拆分. 实验结果表明, 所制备的SBA-15微球不仅分散性良好, 具有规则的二维六方孔道结构, 而且消除了微孔; 所制备的键合手性固定相不仅固载手性选择剂的量大, 而且经六甲基二硅胺烷封端后可有效改善拖尾现象, 对实验选用的手性醇具有较高的拆分能力; 与大孔硅胶为基质的同类纤维素键合手性固定相相比, 该固定相对同种手性消旋体的分离因子明显提高.  相似文献   

6.
Polysaccharide-based chiral packing materials (CPMs) for high-performance liquid chromatography have frequently been used not only to determine the enantiomeric excess of chiral compounds but also to preparatively resolve a wide range of racemates. However, these CPMs can be used with only a limited number of solvents as mobile phases because some organic solvents, such as tetrahydrofuran, chloroform, and so on, dissolve or swell the polysaccharide derivatives coated on a support, e.g., silica gel, and destroy their packed columns. The limitation of mobile phase selection is sometimes a serious problem for the efficient analytical and preparative resolution of enantiomers. This defect can be resolved by the immobilization of the polysaccharide derivatives onto silica gel. Efficient immobilizations have been attained through the radical copolymerization of the polysaccharide derivatives bearing small amounts of polymerizable residues and also through the polycondensation of the polysaccharide derivatives containing a few percent of 3-(triethoxysilyl)propyl residue.  相似文献   

7.
Five β-cyclodextrin (β-CD) derivatives bearing substituted phenylcarbamate/3-(triethoxysilyl)propylcarbamate groups at the 2-, 3-, and 6-positions of glucose unit and another five derivatives containing benzoate at the 2-position and substituted phenylcarbamate/3-(triethoxysilyl)propylcarbamate groups at the 3- and 6-positions were synthesized using the regioselective esterification method. The obtained β-CD derivatives were efficiently immobilized onto the silica gel through the intermolecular polycondensation of a small amount of the triethoxysilyl groups, which were used as the chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). The chiral separation properties of these CSPs were evaluated under the normal-phase HPLC. The effects of solvent polarity and the side chain structures of β-CD derivatives on the chiral recognition ability of the immobilized CSPs were investigated. Among these β-CD derivative CSPs, 2,3,6-tris(3,5-dichlorophenylcarbamate)-β-CD CSP showed a relatively high chiral recognition ability for the studied racemates. The regioselective esterification at the 2-position of glucose unit in the β-CD decreased the chiral recognition ability at the same conditions. For some racemates, the β-CD derivative CSPs showed chiral recognition abilities comparable or better to some chemical bonded β-CD derivative CSPs and 3,5-dichloro- and 3,5-dimethylphenylcarbamates of cellulose and amylose CSPs.  相似文献   

8.
The 3,5-dimethylphenylcarbamate derivatives of cellulose bearing 3-(triethoxysilyl)propyl residues were immobilized in a capillary format onto a monolithic silica support by intermolecular polycondensation of the triethoxysilyl groups. The resulting columns were used for chiral separations using capillary electrochromatography. The effects of the synthesizing solvent, the selector coating procedure, the chiral selector concentration onto the silica monolith and the mobile phase pH value, on the separation of enantiomers were studied. The column-to-column reproducibility and stability also were evaluated. A test set of 14 chiral substances, including acidic, neutral, bifunctional and basic compounds, was used to investigate the effects of the factors mentioned above. Twelve pairs of enantiomers showed enantioselectivity at some of the different conditions tested. The column-to-column repeatability was satisfactory, and the prepared columns were stable under the adopted analysis conditions.  相似文献   

9.
《Tetrahedron: Asymmetry》2000,11(10):2183-2194
Polysilsesquioxane hybrid materials containing chiral binaphthyl moieties are readily available by coupling (R)- or (S)-2,2′-dihydroxy-1,1′-binaphthyl (BINOL) with 3-(triethoxysilyl)propyl isocyanate and subsequent hydrolysis polycondensation of the resulting bis-trialkoxysilylated carbamate precursor. Rhodium species were embedded in the chiral hybrid matrix. The catalytic properties of the solids were evaluated in hydride-transfer reduction to prochiral ketones. When the catalytic species were embedded in an entirely chiral network, enantiomeric excesses up to 45% were observed.  相似文献   

10.
Liu Y  Heyden YV  Mangelings D 《Electrophoresis》2012,33(11):1613-1623
Chiral monolithic silica capillary columns were prepared by immobilization of amylose-3,5-dimethylphenylcarbamate (ADMPC) bearing a small fraction of 3-(triethoxysilyl)propyl residues through intermolecular polycondensation of the triethoxysilyl groups. The obtained columns were used for chiral separations in capillary electrochromatography (CEC). The effects of the silica monolith nature and the used chiral selector concentration on the resulting enantiomeric separations were investigated. Fifteen chiral compounds, including acidic, neutral, and basic substances were evaluated and twelve showed partial or baseline separation at some of the different conditions tested. These results demonstrated the promising applicability of ADMPC-immobilized monolithic silica columns in CEC enantioseparations, but also revealed the need for further improvements on the level of baseline separations and efficiencies.  相似文献   

11.
The spherical beads consisting of cellulose 3,5-dimethylphenylcarbamate with partial hydroxyl groups were prepared to be used as chiral packing materials (CPMs) for HPLC. The beads were obtained without using macroporous silica gel, which is usually used as the support of the CPMs based on the polysaccharide derivatives. After the crosslinking in the bead with diisocyanates, such as 4,4'-diphenylmethane diisocyanate (MDI), 4,4'-dibenzyl diisocyanate (DBDI), tolylene-2,4-diisocyanate (TDI), and m-xylylene diisocyanate (XDI), the obtained beads were packed into an HPLC column. As the content of the hydroxyl groups of the cellulose derivatives decreased, the obtained CPM exhibited a higher chiral recognition ability. The beads possessed a higher loading capacity than the CPM prepared by coating the cellulose derivative on silica gel. The crosslinked beads could be used with the eluent containing chloroform. The amylose derivative beads were also prepared as a CPM for chiral HPLC.  相似文献   

12.
Chiralpak IB, a new chiral stationary phase (CSP) containing cellulose tris(3,5-dimethylphenylcarabamate) immobilized onto silica gel, is investigated for the direct enantioselective separation of a set of racemic N-alkylated barbiturates and analogs of thalidomide alkylated in position 3 of the piperidin-2,6-dione ring using different nonstandard solvents such as dichloromethane (DCM), ethyl acetate, THF, methyl tert-butyl ether as an eluent and diluent, respectively, in HPLC. The separation, resolution, and elution order of the investigated compounds were compared on both immobilized and coated cellulose tris(3,5-dimethylphenylcarbamate) CSPs (Chiralpak IB and Chiralcel OD, respectively) using a mixture of n-hexane/2-propanol (90:10 v/v) as mobile phase with different flow-rates and fixed UV detection at 254 nm. The effect of the immobilization of the cellulose tris-(3,5-dimethylphenylcarbamate) CSP on silica (Chiralpak IB) on the chiral recognition ability was noted as the coated phase (Chiralcel OD) possesses a higher resolving power in some cases than the immobilized one (Chiralpak IB). However, a few racemates, which were not or poorly resolved on the immobilized Chiralpak IB or the coated Chiralcel OD when using standard solvents were most efficiently resolved on the immobilized Chiralpak IB upon using nonstandard solvents. Furthermore, the immobilized phase withstands the nonstandard (prohibited) HPLC solvents mentioned previously when used as eluents or as a dissolving agent for the analyte itself. An example of inversion or apparent inversion of elution order on Chiralpak IB is reported. The direct analysis of a spiked plasma sample extracted using DCM on Chiralpak IB is also shown.  相似文献   

13.
A bio-ink for covalent deposition of thermostable, high affinity biotin-binding chimeric avidin onto sol-gel substrates was developed. The bio-ink was prepared from heterobifunctional crosslinker 6-maleimidohexanoic acid N-hydroxysuccinimide which was first reacted either with 3-aminopropyltriethoxysilane or 3-aminopropyldimethylethoxysilane to form silane linkers 6-maleimide-N-(3-(triethoxysilyl)propyl)hexanamide or -(ethoxydimethylsilyl)propyl)-hexanamide. C-terminal cysteine genetically engineered to chimeric avidin was reacted with the maleimide group of silane linker in methanol/PBS solution to form a suspension, which was printed on sol-gel modified PMMA film. Different concentrations of chimeric avidin and ratios between silane linkers were tested to find the best properties for the bio-ink to enable gravure or inkjet printing. Bio-ink prepared from 3-aminopropyltriethoxysilane was found to provide the highest amount of active immobilized chimeric avidin. The developed bio-ink was shown to be valuable for automated fabrication of avidin-functionalized polymer films.  相似文献   

14.
The classical method for the preparation of immobilized polysaccharide‐based chiral stationary phases (CSPs) with a diisocyanate was improved. Cellulose or amylose was directly coated onto 3‐aminopropyl silica gel after it was dissolved in a mixture of N,N‐dimethylacetamide, LiCl, and pyridine, then immobilized onto silica gel with a diisocyanate, and finally allowed to react with an excess of corresponding isocyanate. Four polysaccharide derivatives, 3,5‐dimethylphenylcarbamate and 3,5‐dichlorophenylcarbamate of cellulose, and 3,5‐dimethylphenylcarbamate and 5‐chloro‐2‐methylphenylcarbamate of amylose, were immobilized onto silica gel utilizing this method. Compared with the classical diisocyanate method, the improved procedure avoided the derivatization and regeneration of 6‐hydroxyl groups of cellulose and amylose, and thus showed an advantage for simple and economical preparation. The relationships among the amount of diisocyanate used, immobilization efficiency, and enantioseparation on the cellulose‐based CSPs were investigated. Also, the solvent durability of the obtained CSPs was examined with eluents containing chloroform or THF. By utilizing these eluents, the chiral recognition abilities of the obtained CSPs for some of the tested racemates were improved.  相似文献   

15.
Three polysaccharide phenylcarbamate derivatives [cellulose 2,3-bis(3,5-dimethylphenylcarbamate)-6-(3,5-dimethylphenylcarbamate)/(2-methacryloyloxyethylcarbamate), cellulose 2,3-bis(3,5-dichlorophenylcarbamate)-6-(3,5-dichlorophenylcarbamate)/(2-methacryloyloxyethylcarbamate), and amylose 2,3-bis(3, 5-dimethylphenylcarbamate)-6-(3,5-dimethylphenylcarbamate)/(2-methacryloyloxyethylcarbamate)] with vinyl groups were prepared and coated onto silica gel to immobilize them via radical copolymerization with 2,3-dimethylbutadiene. The copolymerization efficiently proceeded, and the coated polysaccharide derivatives were mostly immobilized on the surface of the silica gel. The immobilized polysaccharide derivatives showed high chiral recognition abilities similar to those of the corresponding coated polysaccharide derivatives. They could be used with an eluent containing chloroform, which dissolved the polysaccharide derivatives. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4704–4710, 2004  相似文献   

16.
New insoluble surface-active substances are described here for the first time. They were synthesized by esterification of the surfactants sodium 11-hydroxy-undecane-1-sulfonate or dodeca-ethylene glycol monododecyl ether with an aliphatic amino acyl chloride, reaction of the amino group containing ester with the bifunctional reagent 3-(triethoxysilyl) propyl isocyanate, and anchoring the products obtained on silica 100 under mild conditions.The surfactants thus immobilized showed a micellar effect, as proved by their influence on reaction rate and selectivity in the enantioselective hydrogenation of methyl (Z)--acetamido-cinnamate to methylN-acetyl-phenylalaninate (R) by means of an optically active rhodium complex in water.The systems were compared with an inorganic ion exchanger with dodecyl sulfate counterions and with sodium dodecyl sulfate adsorbed to alumina. The influence of the immobilized surfactants on reaction rate and selectivity appeared to be dependent on the mobility of the hydrophobic chains.  相似文献   

17.
制备了β-环糊精-6-单取代氨乙基氨丙基三甲氧基硅烷手性单体(β-CD siloxane),以该手性单体和1,2-双(三乙氧基硅基)乙烷(BTEE)为硅源,十六烷基三甲基溴化铵(CTAB)为模板,采用水热合成法直接制得孔道中含有环糊精的手性介孔材料。 再对该产物进行苯基异氰酸酯化得到杂合β-环糊精的有机-无机介孔分离材料(β-CD PMOs)。 在正相HPLC及反相HPLC条件下,分别考察该填料柱对常见含氮碱性药物对映体的拆分效果。 结果表明,不管在反相或正相分离模式下,采用常见的流动相在pH=4.15条件实现了11个碱性药物的手性分离,手性选择因子(α)最高可达2.42。 孔道中直接杂合β-环糊精的手性固定相制备方法简便、快速和成本低,进一步优化成孔条件后有一定应用前景。  相似文献   

18.
喹啉及其衍生物的多相不对称氢转移是制备杂环手性化合物的理想策略.多相手性催化体系具有催化剂可循环利用及产物分离提纯容易等优势.然而,喹啉及其衍生物的多相手性高效催化体系鲜有报道.这主要是由于多相手性氢转移为水-油-固三相反应,在反应的过程中,传质问题极大影响固体催化剂的催化性能.因此,发展具有相转移功能的手性催化材料,是提高多相氢转移体系催化效率的有效途径.本文采用一锅法合成策略,通过离子液体(ILs)为连接基团实现了TsDPEN手性配体在SBA-15介孔孔道中的嫁接.与Rh盐配位后,获得手性固体催化剂SBA-ILBF4-TsDPEN-Rh.FI-IR光谱和13C NMR结果表明,手性催化活性中心成功负载在SBA-15中,随着手性活性中心负载量的增加,SBA-ILBF4-TsDPEN-Rh的比表面积、孔径和孔容逐渐降低.在喹啉衍生物不对称氢转移反应中,SBA-ILBF4-TsDPEN-Rh系列催化剂催化得到产物的ee值为91%,表明多相手性催化剂具有较高的手性选择性.多相手性催化剂的催化活性随着活性中心负载量的上升而呈现下降的趋势,这主要是由于活性中心负载量较低的多相催化剂具有更高的比表面积和孔容,更有利于催化过程中的传质.与均相手性催化剂相比,优化后的多相手性催化剂表现出更高的催化活性(TOF值分别为75和92 h-1).作为对比,本文还合成了采用烷基链为连接基团的SBA-TsDPEN25-Rh,并以其为基础进一步嫁接了ILs基团,得到SBA-TsDPEN20-ILBF4-Rh.在相同的反应条件下,SBA-ILBF4-TsDPEN50-Rh表现出更高的催化活性.上述结果证实了ILs基团在反应过程中起到相转移以及富集氢源甲酸盐的作用,极大促进了喹哪啶不对称氢转移多相催化体系的活性,并且ILs基团和手性活性中心在空间距离上的接近更有利于催化活性的提高.此外,本文还研究了反应体系pH值对固体催化剂上反应速率的影响,随着反应的进行,反应溶液的pH会呈现明显上升的趋势,导致反应速率减缓以及底物转化受限.通过在反应过程中加入适量甲酸或者选用浓度更高的缓冲溶液可以有效防止催化过程中反应速率的减慢.综上可见,负载手性催化剂中的连接基团对多相手性催化剂的催化性能有重要影响.通过改变手性配体的连接基团提高手性固体催化剂的催化活性和手性选择性的策略可以拓展到其他多相手性催化体系.  相似文献   

19.
The paper illustrates two efficient routes to macrolactone 19 containing a 3-(para-methoxybenzyloxy)propyl side chain at C-15. The chiral center at C-15 was introduced by a Noyori reduction of keto ester 5. The intermediate common to both routes, aldehyde 8, was prepared from keto ester 5. The subsequent chain extension utilized Evans aldol reactions. The first route leads to the alkene 14, which was used, after hydroboration, for a Suzuki cross-coupling reaction with vinyl iodide 15. The derived seco acid 18 was converted into the macrolactone 19 by a Mitsunobu lactonization by using immobilized triphenylphosphine. Alternatively, an aldol reaction of 8 with the 4-pentenoyl derivative 20 was used to prepare alkene 26. This building block led to ester 28, which could also be converted into macrolactone 19 by the classical ring-closing metathesis. After conversion of the C-15 side chain to the corresponding aldehyde, the enamide was introduced through hemiaminal formation and formal elimination of water. Separation of the double-bond isomers and removal of the silyl protecting groups provided salicylihalamides A (E)-1 and B (Z)-1.  相似文献   

20.
《Electrophoresis》2018,39(8):1086-1095
The chiral organic‐inorganic hybrid materials can exhibit a high loading, and the chiral selector nanoparticles can create efficient stationary phases for open‐tubular capillary electrochromatography (OT‐CEC). Hence, a novel protocol for the preparation of an OT column coated with nano‐amylose‐2,3‐bis(3,5‐dimethylphenylcarbamate) (nano‐ABDMPC)‐silica hybrid sol through in situ layer‐by‐layer self‐assembly method was developed for CEC enantioseparation. By controlling the assembly cycle number of nano‐ABDMPC‐silica hybrid sol, a homogeneous, dense and stable coating was successfully prepared, which was confirmed by SEM and elemental analysis. As the main parameter influencing the chiral separating effect, the nano‐ABDMPC bearing 3‐(triethoxysilyl)propyl residues concentration was investigated. The experimental results showed that 10.0 mg/mL nano‐ABDMPC bearing 3‐(triethoxysilyl)propyl residues coated OT capillary column possessed chiral recognition ability toward the six enantiomers (phenylalanine, tyrosine, tryptophan, phenethyl alcohol, 1‐phenyl‐2‐propanol, and Tröger's base) at some of the different conditions tested. Additionally, the coated OT column revealed adequate repeatability concerning run‐to‐run, day‐to‐day and column‐to‐column. These results demonstrated the promising applicability of nano‐ABDMPC‐silica hybrid sol coated OT column in CEC enantioseparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号