首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
Specular X-ray reflectivity (XR) and quartz crystal microbalance (QCM) measurements were used to determine the absorption of water into thin poly(4-ammonium styrenesulfonic acid) films from saturated vapor at 25 degrees C. The effect of film thickness on the absorption kinetics and overall absorption was investigated in the range of thickness from (3 to 200) nm. The equilibrium swelling of all the films irrespective of film thickness was (0.57+/-0.03) volume fraction. Although the equilibrium absorption is independent ofthickness, the absorption rate substantially decreases for film thickness < 100 nm. For the thinnest film (3 nm), there is a 5 orders of magnitude decrease in the diffusion coefficient for water.  相似文献   

2.
A method for the determination of minor and trace elements (Zn, Cd, Pb, Cu and Ag) in sulphide minerals by atomic absorption spectrophotometry is described. For enhancing the sensitivity of the determination, the absorption tube technique is applied. Memory effects and background absorption influences on the measurement with absorption tubes are discussed.  相似文献   

3.
Summary Some organic acids, alcohol and amine which have an asymmetric carbon atom were used for an investigation of asymmetric absorption on wool. Racemic mixture of hydratropic acid, mandelic acid andα-phenethylamine have shown the selective absorption on wool from their aqueous and alcoholic aqueous solutions and S-form of their diastereoisomers preferentially absorbed on wool. According to the results we obtained so far, it is concluded that the preferential absorption strongly depends on the configuration of the substance of which wool is composed.  相似文献   

4.
5.
Recent advances in laser-atom cooling techniques and diode-laser technology now allow one to conduct an idealised atomic absorption experiment comprising a sample of ultracold, quasi-stationary absorbing atoms and a source of near-monochromatic resonant light. Under such conditions, the atomic absorption coefficient at line centre is independent of the oscillator strength of the atomic resonance line. This offers the prospect of ‘oscillator-strength-free’ atomic absorption spectroscopy in which the absorption signal is equally large for both strong and weak (closed) transitions of the same wavelength and in which absolute atomic absorption could be performed without knowledge of the oscillator strength. Moreover, the resolution and sensitivity for a given atom density are greatly enhanced, typically by approximately three orders of magnitude (and even more for weak transitions), compared with conventional flame or graphite-furnace atomic absorption. We describe an atomic absorption experiment based on samples of ultracold, laser-cooled caesium atoms and a narrow-bandwidth diode laser source that approximates the idealised conditions for oscillator-strength-free atomic absorption. The absorption measurements are used to determine the number density and temperature (approx. 6 μK) of the sample of ultracold atoms. Some of the technical obstacles that would have to be overcome before samples of ultracold atoms and diode laser sources could be used in analytical atomic absorption spectroscopy are discussed.  相似文献   

6.
When hollow-cathode tubes are used as the emission source and as the absorption source, atomic absorption studies reveal microgram quantities of several elements; sodium, magnesium, calcium, beryllium, and silicon were detected in the discharge of the absorption tube. Conventional, independent circulating systems and d.c. power supplies, were used with each tube, along with other readily available equipment. An analytical curve plotted for sodium over the range 0—100 μg, obeys Beer's law. Lithium and magnesium suppress the sodium absorption values, thus careful standardization is necessary. The average percent deviation from the mean for a number of sodium samples analyzed was ± 8.0%.  相似文献   

7.
In this paper, we define the two-photon absorption strength, a new characterization tool, similar to the oscillator strength, but for two-photon absorption. It allows the quantification of the two-photon absorption properties of molecular systems which are one-photon transparent. Its definition is such that the corresponding numerical values are around 100 for small molecules. We also show that this new theoretical tool allows the direct comparison of experimental and theoretical data without requiring the introduction of any arbitrary band width. As an example, the experimental and theoretical (AM1+CNDOS and HF+CIS3-21G) two-photon absorption properties of the 2,2'-bi(9,9-dihexylfluorene) molecule are compared.  相似文献   

8.
The photophysical properties, such as the UV-vis absorption spectra, triplet transient difference absorption spectra, triplet excited-state extinction coefficients, quantum yields of the triplet excited state, and lifetimes of the triplet excited state, of 10 novel zinc phthalocyanine derivatives with mono- or tetraperipheral substituents have been systematically investigated in DMSO solution. All these complexes exhibit a wide optical window in the visible spectral range and display long triplet excited-state lifetimes (140-240 mus). It has been found that the complexes with tetrasubstituents at the alpha-positions exhibit a bathochromic shift in their UV-vis absorption spectra, fluorescence spectra, and triplet transient difference absorption spectra and have larger triplet excited-state absorption coefficients. The nonlinear absorption of these complexes has been investigated using the Z-scan technique. It is revealed that all complexes exhibit a strong reverse saturable absorption at 532 nm for nanosecond and picosecond laser pulses. The excited-state absorption cross sections were determined through a theoretical fitting of the experimental data using a five-band model. The complexes with tetrasubstituents at the alpha-positions exhibit larger ratios of triplet excited-state absorption to ground-state absorption cross sections (sigma T/sigma g) than the other complexes. In addition, the wavelength-dependent nonlinear absorption of these complexes was studied in the range of 470-550 nm with picosecond laser pulses. All complexes exhibit reverse saturable absorption in a broad visible spectral range for picosecond laser pulses. Finally, the nonlinear transmission behavior of these complexes for nanosecond laser pulses was demonstrated at 532 nm. All complexes, and especially the four alpha-tetrasubstituted complexes, exhibit stronger reverse saturable absorption than unsubstituted zinc phthalocyanines due to the larger ratio of their excited-state absorption cross sections to their respective ground-state absorption cross sections.  相似文献   

9.
A theoretical analysis is presented of the signals observed with different systems that employ the Zeeman effect for background correction in analytical atomic absorption spectrometry.Magnetic modulation of the primary source of radiation offers basically the same possibilities as the deuterium background correction system. Correction for wavelength dependent background absorption is possible only when the magnetic field is applied to the absorbing vapour. Similar expressions are obtained for constant or variable magnetic fields directed either perpendicular or parallel to the optical axis. However, mere magnetic modulation of either the source or the atomizer cannot correct for non-absorbed lines.It is demonstrated that simultaneous correction for non-absorbed lines and background absorption can be attained with a variable magnetic field applied to the atomizer, by taking measurements at three discrete, different field strengths.  相似文献   

10.
A correlation function formalism is applied to compute the two-photon absorption spectrum of benzene. Using harmonic Hamiltonians for the ground and excited electronic states, we find that the theory agrees qualitatively with the experimentally observed sparsity of the thermal two-photon absorption spectrum as compared with the single-photon absorption spectrum. An expression for the average vibrational energy in the excited state is derived. We find that cooling of the nascent vibrational energy in the electronically excited state is not as extensive in the two-photon absorption process as compared to the single-photon case.  相似文献   

11.
In this work, we investigate the nonlinear absorption dynamics of Zn phthalocyanine in dimethyl sulfoxide (DMSO). We used single pulse and pulse train Z-scan techniques to determine the dynamics and absorption cross-sections of singlet and triplet states at 532 nm. The excited singlet state absorption cross-section was determined to be 3.2 times higher than the ground state one, giving rise to reverse saturable absorption. We also observed that reverse saturable absorption occurs from the triplet state, after its population by intersystem crossing, whose characteristic time was determined to be 8.9 ns. The triplet state absorption cross-section determined is 2.6 times higher than the ground state one. In addition, we used the white light continuum Z-scan to evaluate the singlet excited state spectrum from 450 to 710 nm. The results show two well-defined regions, one above 600 nm, where reverse saturable absorption is predominant. Below 600 nm, we detected a strong saturable absorption. A three-energy-level diagram was used to explain the experimental results, leading to the excited state absorption cross-section determination from 450 nm up to 710 nm.  相似文献   

12.
石墨炉原子吸收光谱中尿的背景吸收研究   总被引:5,自引:0,他引:5  
莫胜钧 《化学学报》1989,47(8):804-807
本文较详细地研究了尿背景吸收的来源, 特点和消除方法, 背景吸收波长特性和在石墨管内蒸发行为的研究表明, 尿的背景吸收主要来自氯化钠, 其次是氯化铵, 其他组份的贡献很小, 时间特性研究表明, 背景吸收大小和背景吸收曲线轮廓与原子化阶段的加热方式和原子化温度有关。还研究了应用基体改进剂和其他减小背景吸收的方法。  相似文献   

13.
The detailed structures of most of ligand-stabilized metal nanoclusters (NCs) remain unknown due to the absence of crystal structure data for them. In such a situation, quantum-chemical modeling is of particular interest. We compared the performance of different theoretical methods of geometry optimization and absorption spectra calculation for silver-thiolate complexes. We showed that the absorption spectra calculated with the ADC(2) method were consistent with the spectra obtained with CC2 method. Three DFT functionals (B3LYP, CAM-B3LYP, and M06-2X) failed to reproduce the CC2 absorption spectra of the silver-thiolate complexes.  相似文献   

14.
Geometric progression fitting method has been used to compute energy absorption build-up factor of teeth [enamel outer surface, enamel middle, enamel dentin junction towards enamel, enamel dentin junction towards dentin, dentin middle and dentin inner surface] for wide energy range (0.015?C15?MeV) up to the penetration depth of 40 mean free path. The dependence of energy absorption build-up factor on incident photon energy, penetration depth, electron density and effective atomic number has also been studied. The energy absorption build-up factors increases with the penetration depth and electron density of teeth. So that the degree of violation of Lambert?CBeer (I?=?I 0e???t ) law is less for least penetration depth and electron density. The energy absorption build-up factors for different regions of teeth are not same hence the energy absorbed by the different regions of teeth is not uniform which depends on the composition of the medium. The relative dose of gamma in different regions of teeth is also estimated. Dosimetric implication of energy absorption build-up factor in teeth has also been discussed. The estimated absorption build up factors in different regions of teeth may be useful in the electron spin resonance dosimetry.  相似文献   

15.
Three observations have been made pertinent to atomic absorption spectroscopy. With a flame atomizer, it is shown that (1) the absorption profile is controlled by metal oxide formation, (2) organo-metallic compounds give rise to greater absorption than metal salts, and (3) absorption by hydroxyl bands affects the apparent metal absorption in certain spectral regions.  相似文献   

16.
A comprehensive analysis of the well-known open aperture Z-scan method, using a modified equation for the change in transmittance, is presented and accounts for discrepancies in two-photon absorption (2PA) cross sections between picosecond and femtosecond excitation. This new approach takes into account excited-state absorption and stimulated emission of the molecules studied. The two-photon absorption cross-section spectra of a series of six fluorene-based derivatives, determined using picosecond pulses, over a broad spectral range (500-900 nm), and this approach using a modified fitting procedure in the open aperture Z-scan is reported. We demonstrate that the fluorene derivatives exhibit two-photon absorption cross-section values between 700 and 5000 GM, when excited into the two-photon allowed electronic state. Excitation anisotropy spectra, measured to investigate the nature of the observed linear and nonlinear absorption bands, are presented and provide insight into the 2PA process.  相似文献   

17.
A simple method is proposed for the measurement of the absorption spectra in the visible and UV regions of photocolored solutions of spiropyrans, formed by the action of constant lowintensity UV irradiation, and for the construction, on the basis of these data, of the absorption spectra of the merocyanine forms of spiropyrans. The absorption spectra of the merocyanine forms of two spiropyrans in various solvents are examined.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1534–1538, November, 1972.  相似文献   

18.
A time-dependent quantum model involving two wave packets on two excited-state surfaces is presented to describe absorption (or emission) from the transition state of a chemical reaction. The connection between the quantum result and existing classical theories is shown. The model ia applied to the direct dissociation of ICN* and gives results in good agreement with experiment. The dissociation time - the time to half-maximal absorption - is almost invariant with the pulse width but is dependent on the probe wavelength. A lower absorption plateau and a longer dissociation time is predicted for probe energies above the asymptotic resonance energy.  相似文献   

19.
Optically induced charge transfer between adsorbed molecules and a metal electrode was predicted by Hush to lead to new electronic absorption features but has not been experimentally observed. However, Gerischer characterized photocurrents arising from such absorption between adsorbed metal atoms and semiconductor conduction bands. Interfacial charge-transfer absorption (IFCTA) provides information concerning the barriers to charge transfer between molecules and the metal/semiconductor and the magnitude of the electronic coupling and could thus provide a powerful tool for understanding interfacial charge-transfer kinetics. Here we provide a framework for modeling and predicting IFCTA spectra. The key feature of optical charge transfer to or from a band of electronic levels (taken to have a constant density of states and electronic coupling element) is that the absorption probability reaches half intensity at lambda + DeltaG(theta), where lambda and DeltaG(theta) are the reorganization energy and free-energy gap for the optical charge transfer, attains >90% intensity at lambda + DeltaG(theta) + 0.9 square root[4lambdak(B)T], and remains essentially constant until the top (bottom) level of the band is attained. However, when the electronic coupling and transition moment are assumed to be independent of photon energy (Mulliken-Hush model), a peaked, highly asymmetric absorption profile is predicted. We conclude that, in general, the electronic coupling between molecular adsorbates and the metal levels is so small that absorption is not detectable, whereas for semiconductors there may be intense features involving coupling to surface states.  相似文献   

20.
Some factors affecting the shape of analytical curves in atomic absorption spectroscopy are considered and the influence of the emission and absorption line profiles is discussed in detail. An empirical equation expressing the analytical curves for different ratios of emission line width to absorption line width is given. The possible influence of resonance line broadening and resonance line shift in atomic absorption flame photometry is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号