首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, mechanochemistry has enriched the toolbox of synthetic chemists, enabling faster and more sustainable access to new materials and existing products, including active pharmaceutical ingredients (APIs). However, molecular-level understanding of most mechanochemical reactions remains limited, delaying the implementation of mechanochemistry in industrial applications. Herein, we have applied in situ monitoring by Raman spectroscopy to the mechanosynthesis of phenytoin, a World Health Organization (WHO) Essential Medicine, enabling the observation, isolation, and characterization of key molecular-migration intermediates involved in the single-step transformation of benzil, urea, and KOH into phenytoin. This work contributes to the elucidation of a reaction mechanism that has been subjected to a number of interpretations over time and paints a clear picture of how mechanosynthesis can be applied and optimized for the preparation of added-value molecules.  相似文献   

2.
The mechanochemical synthesis of nanomaterials for catalytic applications is a growing research field due to its simplicity, scalability, and eco-friendliness. Besides, it provides materials with distinct features, such as nanocrystallinity, high defect concentration, and close interaction of the components in a system, which are, in most cases, unattainable by conventional routes. Consequently, this research field has recently become highly popular, particularly for the preparation of catalytic materials for various applications, ranging from chemical production over energy conversion catalysis to environmental protection. In this Review, recent studies on mechanochemistry for the synthesis of catalytic materials are discussed. Emphasis is placed on the straightforwardness of the mechanochemical route—in contrast to more conventional synthesis—in fabricating the materials, which otherwise often require harsh conditions. Distinct material properties achieved by mechanochemistry are related to their improved catalytic performance.  相似文献   

3.
Mechanochemical reactions effected by milling or grinding are an attractive means to conduct chemical reactions dependent on molecular recognition and to systematically explore different modes of molecular self-assembly. The natural relationship between milling mechanochemistry and supramolecular chemistry arises primarily from the ability to avoid bulk solvent, which simultaneously avoids limitations of solution-based chemistry, such as solubility, solvent complexation, or solvolysis, and makes the resulting process highly environmentally friendly. This tutorial review highlights the use of mechanochemistry for the synthesis of supramolecular targets in the solid state, such as molecular hydrogen- or halogen-bonded complexes, molecular and supramolecular cages, open frameworks and interlocked architectures. It is also demonstrated that the molecular self-assembly phenomena that are well-established in solution chemistry, such as reversible binding through covalent or non-covalent bonds, thermodynamic equilibration and structure templating, are also accessible in milling mechanochemistry through recently developed highly efficient methodologies such as liquid-assisted grinding (LAG) or ion- and liquid-assisted grinding (ILAG). Also highlighted are the new opportunities arising from the marriage of concepts of supramolecular and mechanochemical synthesis, including organocatalysis, deracemisation and discovery of new molecular recognition motifs.  相似文献   

4.
Mechanochemistry: opportunities for new and cleaner synthesis   总被引:2,自引:0,他引:2  
The aim of this critical review is to provide a broad but digestible overview of mechanochemical synthesis, i.e. reactions conducted by grinding solid reactants together with no or minimal solvent. Although mechanochemistry has historically been a sideline approach to synthesis it may soon move into the mainstream because it is increasingly apparent that it can be practical, and even advantageous, and because of the opportunities it provides for developing more sustainable methods. Concentrating on recent advances, this article covers industrial aspects, inorganic materials, organic synthesis, cocrystallisation, pharmaceutical aspects, metal complexes (including metal-organic frameworks), supramolecular aspects and characterization methods. The historical development, mechanistic aspects, limitations and opportunities are also discussed (314 references).  相似文献   

5.
In this review, we introduced the mechanical factors in cancer cell metastasis, intracellular mechanical sensors and methods to measure the mechanical forces of tumor cells for evaluating the mechanochemistry in cancer metastasis.  相似文献   

6.
At present mechanochemistry of sulphides appears to be a science with a sound theoretical foundation exhibiting a wide range effectiveness in different areas of science and technology. For traditional application mechanochemistry is of exceptional importance in extractive metallurgy of sulphidic ores where many technological processes have been developed. Metal sulphides can be also utilized in emerging nanotechnology with application as advanced luminescence, optoelectronic, magnetic and catalytic materials.  相似文献   

7.
建立了工业二氧化锆中氯离子的超声分散–离子色谱检测法。采用超声分散的方式辅助萃取,超声后的样品经过0.22μm的滤膜过滤,取清液进行检测。以20 mmol/L氢氧化钾溶液作为流动相,流量为1.5 m L/min。该方法的检出限为0.000 2%,测定结果的相对标准偏差小于3%(n=6),加标回收率为92.0%~110.0%。与电位滴定法进行比对,两种方法检测结果相符。该方法简便准确,检出限低,有推广应用价值。  相似文献   

8.
A series of Zr-based metal-organic frameworks were continuously synthesized with high quality and high productivity through microdroplet flow reaction.  相似文献   

9.
We developed a novel method to determine the molecular composition of surface tethered carboxylated poly(OEGMA-r-HEMA), which in turn determines the swelling induced Au-S bond breakage (CBB) event. More accurate control over CBB will eventually lead to many applications in mechanochemistry and controlled release.  相似文献   

10.
Mechanically sensitive biocomposites comprised of fluorescent proteins report stress through distinct pathways. Whereas a composite containing an enhanced yellow fluorescent protein (eYFP) exhibited hypsochromic shifts in its fluorescence emission maxima following compression, a composite containing a modified green fluorescent protein (GFPuv) exhibited fluorescence quenching under the action of mechanical force. These ratio‐ and intensiometric sensors demonstrate that insights garnered from disparate fields (that is, polymer mechanochemistry and biophysics) can be harnessed to guide the rational design of new classes of biomechanophore‐containing materials.  相似文献   

11.
Atomic‐scale mechanochemistry is realized from force exerted by a C60‐functionalized scanning tunneling microscope tip. Two conformers of tin phthalocyanine can be prepared on coinage‐metal surfaces. A transition between these conformers is induced on Cu(111) and Ag(100). Density‐functional calculations reveal details of this reaction. Because of the large energy barrier of the reaction and the strong interaction of SnPc with Cu(111), the process cannot be achieved by electrical means.  相似文献   

12.
王川  王晓晶  郭妍 《化学通报》2023,86(9):1097-1102
机械力化学作为一种无需溶剂的绿色化学技术得到广泛关注。然而,机械力化学反应机制需要从原子和分子尺度上深入理解力诱导的化学反应。在过去的20年中,量子化学模型方法在机械力化学机理研究中得到广泛应用,高精度量化计算可得到外力下变形分子的几何结构、能量、过渡态等诸多性质。本文介绍了目前机械力化学领域的主流量子化学模型的基本原理,同时也关注了这些模型方法在软件上的具体实现,并借助典型的案例阐述了量子化学模型在解释机械力化学机理中的作用与价值。  相似文献   

13.
Owing to their wide range of biological properties, γ-aminobutyric acid derivatives (GABA) have been extensively studied and found noteworthy industrial applications. However, atom-economical and efficient processes for their production are scarce and would greatly benefit from further investigations. Herein, we demonstrate that an iridium-based photocatalyst promotes the direct reductive cross-coupling of imines with olefins upon irradiation with visible light to give GABA derivatives in good yields and selectivities. We also stress the enabling triple role of tributylamine additive in this process, discuss the advantages of strategies based on proton-coupled electron transfer (PCET) and demonstrate the scale-up of this reaction in continuous flow.  相似文献   

14.
 根据 30万t乙烯工程“橡胶”装置中生产工艺控制的实际需要 ,研究了在线分析己烷中痕量四氢呋喃的气相色谱柱系统。使用自制的 7μm特厚膜甲基硅氧烷大孔径弹性石英毛细管柱 ,通过试验不同条件下色谱柱的分离特性及研究组分在柱内的运动轨迹 ,给出了总的柱切换时间程序。在上述基础上 ,完成了正己烷、环己烷中 10 -6(体积分数 )级的四氢呋喃分析。现场应用一年多的实践表明 ,所研制的柱系统从分析时间、运行稳定性、定量准确性 (相对标准偏差小于 5 % )等方面均满足工艺控制的要求。  相似文献   

15.
The production of volatile compounds from cancer cell lines in vitro has been investigated using selected ion flow tube mass spectrometry (SIFT-MS). This technique enables on-line quantitative analyses of the headspace above cell/medium cultures. This paper reports the discovery that acetaldehyde is released by the lung cancer cell lines SK-MES and CALU-1. The concentration of acetaldehyde in the headspace of the medium/cell culture was measured after 16 h incubation at 37 degrees C and found to be proportional to the number of cancer cells in the medium (typically 10(8)). From these data, the acetaldehyde production rates of the SK-MES cells and the CALU-1 cells in vitro are determined to be 1 x 10(6) and 1.5-3 x 10(6) molecules/cell/min, respectively. The potential value of this new technique in cell biology and in industrial cell biotechnology is discussed.  相似文献   

16.
One-step continuous flow synthesis was developed and applied for the preparation of amino propyl silica-coated nanoparticles (APSMNPs). This was accomplished in one step through continuous flow synthesis and amino propyl silica coating. Magnetite nanoparticles (MNPs) are generated in situ using a continuous flow synthesis system before being coated with amino propyl silica using tetraethyl orthosilicate (TEOS) condensation process and 3-aminopropyl triethoxysilane (APTES) condensation process in different ratios. The effect of the molar ratio of TEOS to APTES on the structure and physicochemical properties of the corresponding APSMNPs was examined by N2 adsorption–desorption isotherm, transmission electron microscope (TEM), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope energy dispersive X-ray (SEM-EDX). This continuous flow process has advantages such as easy scalability, convenient production, easy control, an economical method with less time and reagents than traditional synthetic methods. It is a good choice for industrial production of APSMNPs.  相似文献   

17.
Many of the attractive properties in polymers are a consequence of their high molecular weight and therefore, scission of chains due to mechanochemistry leads to deterioration in properties and performance. Intramolecular cross-links are systematically added to linear chains, slowing down mechanochemical degradation to the point where the chains become virtually invincible to shear in solution. Our approach mimics the immunoglobulin-like domains of Titin, whose structure directs mechanical force towards the scission of sacrificial intramolecular hydrogen bonds, absorbing mechanical energy while unfolding. The kinetics of the mechanochemical reactions supports this hypothesis, as the polymer properties are maintained while high rates of mechanochemistry are observed. Our results demonstrate that polymers with intramolecular cross-links can be used to make solutions which, even under severe shear, maintain key properties such as viscosity.  相似文献   

18.
金属-有机骨架(MOFs)是由金属离子/簇和多齿状有机配体通过配位键桥联而形成的多孔晶态材料。MOFs材料具有孔隙率高、比表面积大、尺寸可调、结构易修饰、功能多样化等特点,使其在气体吸附、分离和催化等方面都具有潜在应用价值。到目前为止,在MOFs合成的几种常见方法中,机械化学法(即在无溶剂或极少量溶剂的情况下研磨固体反应物进行的反应)作为一种清洁、绿色、高效的合成手段逐渐引起人们的关注。本综述总结了近年来机械化学合成MOFs及其复合物的典型进展,目的是为机械化学法合成MOFs及其复合材料提供一个通用而易于理解的概述。目前的研究进展表明,机械化学法是一种实用且环境友好的合成方法,为低成本、宏量生产MOFs及其复合物提供了可能。  相似文献   

19.
Liquid phase tubular loop polymerization reactors are widely used in the polyolefin industries because of their capabilities to promote high mixing of reactants in the reaction vessel and to allow for high heat transfer rates with the cooling jacket due to their high aspect ratio. Previous works on this subject focused on the modeling of the polymerization system, but only a few compared their results with real industrial data. A literature review about the propylene production in loop reactors shows that the validation of a distributed model with actual industrial data is yet to be presented. A distributed mathematical model is presented for industrial liquid phase loop polypropylene reactors and validated with actual industrial data for the first time. The model is able to represent the dynamic trajectories of production rates, MFI and XS values during grade transitions within the experimental accuracy. The model indicates that the polymer quality can change significantly along the reactor train and that manipulation of feed flow rates can be successfully used for production of more homogeneous polymer products.  相似文献   

20.
The mechanochemistry of the disulfide bridge--that is, the influence of an externally applied force on the reactivity of the sulfur-sulfur bond--is investigated by unrestricted Kohn-Sham theory. Specifically, we apply the COGEF (constrained geometry simulates external force) approach to characterize the mechanochemistry of the disulfide bond in three different chemical environments: dimethyl disulfide, cystine, and a 102-atom model of the I27 domain in the titin protein. Furthermore, the mechanism of the thiol-disulfide reduction reaction under the effect of an external force is investigated by considering the COGEF potential for the adduct and transition-state clusters. With the unrestricted Becke-three-parameter-Lee-Yang-Parr (UB3LYP) exchange-correlation functional in the 6-311++G(3df,3pd) orbital basis, the rupture force of dimethyl disulfide is 3.8 nN at a disulfide bond elongation of 35 pm. The interaction with neighboring groups and the effect of conformational rigidity of the protein environment have little influence on the mechanochemical characteristics. Upon stretching, we make the following observations: the diradical character of the disulfide bridge increases; the energy difference between the singlet ground state and low-lying triplet state decreases; and the disulfide reduction is promoted by an external force in the range 0.1-0.4 nN. Our model of the interplay between force and reaction mechanism is in qualitative agreement with experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号