首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
甲基丙烯酸甲酯 甲基丙烯酸共聚物(P(MMA MAA))与低分子量或高分子量梯形聚苯基硅倍半氧烷(PPSQ)的共混物经原位聚合法制成.用光学透明法、荧光光谱、DSC等技术研究了该共混体系的相容性及组分间的相互作用及结构转变.结果表明,当PPSQ含量较小时,由于PPSQ与P(MMA MAA)间存在着较强的氢键作用,该共混体系在一定配比下相容,且低分子量PPSQ与P(MMA MAA)间的相容性较好.当PPSQ的含量≤1%时,PPSQ的加入对该共混物的Tg影响不大,但其Tf随PPSQ含量增加而增大.此外,还测试了P(MMA MAA)/PPSQ原位共混物的硬度及冲击强度.  相似文献   

2.
The chemical structure of copolymer formed in the transesterification of PPSQ/PET blendsduring melt-processing is deduced from the ~1H-NMR spectra. The transesterification extent ofthis blend is interpreted by the changes of crystalline melting peak in DSC thermograms of the in-soluble products containing unreacted PET and some block PPSQ segments. Effects of composi-tion of blend ladderlike regularity of PPSQ on the reaction extent have also been discussed.Inclusion of some block PPSQ segments in PET has no influence on the crystalline morphology ofPET.  相似文献   

3.
The ladderlike structure of PPSQ synthesized by using four kinds of catalysts (MgF_2,LiF, KOH and DCC) at different polymerization conditions has been investigated by IRand NMR. In the system using MgF_2 as the main catalyst, the most important factorwhich affects the ladderlike structure of PPSQ is the composition of the dual catalysts,MgF_2 and DCC. PPSQ prepared by using KOH as the catalyst has the highest regularityof ladderlike structure among all samples. PPSQ with different degree of ladder regularitycan be obtained by choice of polymerization conditions.  相似文献   

4.
Blends of poly(carbonate of bisphenol A) (PC) with minute amounts of a nanocomposite based in polyamide 6 (PA6) with a layered organoclay (nPA6) were obtained upon melt mixing by varying the contents of both nPA6 and organoclay. The ternary nanocomposites (NC) were composed of a PC-rich matrix with some mixed PA6 present, and by a neat nPA6 dispersed phase. Upon dissolution of the matrix of the NC’s, the dispersed phase showed a highly fibrillar morphology that resembled that of thermoplastic/liquid crystalline polymer (LCP) blends. The cryogenically fractured surfaces observed by SEM showed a very fine particle size that was attributed to the presence of PA6 in the matrix and indicated a low interfacial tension. The Young’s modulus behaviour is proposed to be a consequence of the slight orientation of the PC-rich matrix and the highly fibrillated and oriented nPA6 dispersed phase. The important reinforcement effect of the dispersed phase is attributed to the additive effects of its large degree of orientation, and the reinforcing effect of the organoclay.  相似文献   

5.
Blends of bisphenol-A polyarbonate (PC) and poly(ethylene terephthalate) (PET) has been investigated by differential scanning calorimetry and scanning electron microscopy. Blends were prepared by screw extrusion and solution casting with weight fractions of PC in the blends varying from 0.90 to 0.10. From the measured glass transition temperature (Tg) and apparent weight fractions of PC and PET dissolved in each phase, it appears that PET dissolves more in the PC-rich phase than does the PC in the PET-rich phase. The composition-dependent values of the Flory–Huggins polymer–polymer–interaction parameter were determined and found to be from 0.054 to 0.037 for extruded blends at 275°C and from 0.058 to 0.040 for solution casting at 25°C. The interaction parameter decreases with increasing PET concentration. This result is consistent with the values of the Tgs, the microscopy study, and the measured extrudate swell ratios which show that compatibility increases more in the PET-rich compositions than in the PC-rich compositions. The PC–PET blends are not microscopically miscible for all the blend compositions.  相似文献   

6.
The compatibilizing effect of a random copolymer, which is the transesterification product, on its corresponding blend system of bisphenol-A polycarbonate/poly(ethylene terephthalate) (PC/PET) has been studied using a Differential Scanning Calorimeter and a Phase Contrast Microscope. It was found that after a long time of transesterification between PET and PC (50/50, wt %), the obtained product, that is, TCET random copolymer, is miscible with individual homopolymers of PC and PET. The addition of the TCET copolymer into the immiscible PC/PET blend can make the glass transitions of the PC-rich phase and PET-rich phase approach each other, and eventually merge into a single glass transition when the content of TCET in the ternary mixture reaches 60 wt %. Meanwhile, the phase structure images showed that with the increasing content of the TCET copolymer in the ternary blends, the size of the phase domains decreases and the phase domains further diminish at 60 wt % TCET. All these results proved the compatibilizing effect of TCET copolymer on the PC/PET blends in their ternary mixture. The mechanism of the compatibilizing effect is directly related to the reduction of the interfacial tension between PC-rich and PET-rich phase domains in the presence of increasing amounts of TCET copolymer in the ternary blends. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2960–2972, 1999  相似文献   

7.
The poly(phenylsilsesquioxane) (PPSQ) particles were prepared with both basic and acidic catalyzed processes and the PP/PPSQ composites were prepared by melt blending method. Studies on PPSQ by Infrared (IR), X‐ray diffraction (XRD), 29Si cross polarized (CP) nuclear magnetic resonance (NMR) spectroscopy showed that the structure of PPSQ was ladder structure. The results of scanning electron microscopy (SEM) confirmed that the prepared PPSQ particles were about 2 µm with narrow size distributions. The morphology and thermal stability of PP/PPSQ composites were characterized by SEM, XRD, and thermogravimetric analysis (TGA). The SEM result showed that the particles were well dispersed in the PP matrix and the XRD revealed that the addition of PPSQ influences the crystallinity and crystal orientation of PP. The thermogravimetric analysis results of the PP/PPSQ composites indicated that the incorporation of PPSQ can improve the thermal stability of PP. The Flynn–Wall–Ozawa method was employed to analyze the TGA data and the kinetic results showed that the apparent activation energy for PP/PPSQ composites was much higher than that of neat PP, suggesting that the PPSQ influences the mechanisms of pyrolysis of PP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
四氧化疗染色法在PC/PET共混体研究中的应用   总被引:1,自引:0,他引:1  
以RuO4为双酚A聚碳酸酯/聚对苯二甲酸乙二酯(PC/PET)共混体系的薰染剂,可成功地用透射电观察其微观形态和相结构,该体系两相微观结构受原料分子量,组成和溶剂的影响。  相似文献   

9.
Xiong  ZhuoYue  Sun  Yao  Wang  Li  Guo  ZhaoXia  Yu  Jian 《中国科学:化学(英文版)》2012,55(5):807-812
Carbon nanotube (CNT)-filled polycarbonate (PC)/poly(butylene terephthalate) (PBT) and polycarbonate (PC)/poly(ethylene terephthalate) (PET) blends containing 1 wt% CNTs over a wide range of blend compositions were prepared by melt mixing in a torque rheometer to investigate the structure-electrical conductivity relationship. Field emission scanning electron microscopy was used to observe the blend morphology and the distribution of CNTs. The latter was compared with the thermodynamic predictions through the calculation of wetting coefficients. It was found that CNTs are selectively localized in the polyester phase and conductive blends can be obtained over the whole composition range (20 wt%, 50 wt% and 80 wt% PBT) for CNT-filled PC/PBT blends, while conductive CNT-filled PC/PET blends can only be obtained when PET is the continuous phase (50 wt%, 80 wt% PET). The dramatic difference in the electrical conductivity between the two types of CNT-filled PC/polyester blends at a low polyester content (20 wt%) was explained by the size difference of the dispersed phases on the basis of the transmission electron microscope micrographs.  相似文献   

10.
Biphasic polymer latexes were synthesized by a seeded swelling and polymerization method. The latexes were composed of a poly(butyl methacrylate) core and a poly(ethylene oxide) rich shell cross-linked with poly(ethylene oxide)-poly (propylene oxide)-poly(ethylene oxide) triblock diol diacrylate macro-cross-linker. Nanostructured films were obtained by annealing the biphasic polymer latexes at a temperature between the glass-transition temperatures of the core latex and the cross-linked poly(ethylene oxide) based shell. Atomic force microscope images of the latex film revealed that the poly(butyl methacrylate) core phase is confined in the poly(ethylene oxide)-rich continuous phase with the form of separate nanosized spheres.  相似文献   

11.
Polyphenylsilsesquioxane (PPSQ) was incorporated into an epoxy resin to prepare organic–inorganic composites, and two strategies were adopted to afford composites with different morphologies. Phase separation induced by polymerization occurred in the physical blending system. However, nanostructured composites were obtained when a catalytic amount of aluminum triacetylacetonate was added to mediate the reaction between PPSQ and diglycidyl ether of bisphenol A (DGEBA). The intercomponent reaction significantly suppressed the phase separation on the micrometer scale. Organic–inorganic composites with different morphologies displayed quite different thermomechanical properties. Both differential scanning calorimetry and dynamic mechanical analysis showed that the nanostructured composites possessed higher glass‐transition temperatures than the phase‐separated composites with the same loading of PPSQ, although the intercomponent reaction between PPSQ and DGEBA reduced the crosslinking density of the epoxy matrix. This result was ascribed to the presence of nanosized PPSQ domains in the nanostructured composites, which acted as physical crosslinking sites and thus reinforced the epoxy networks. The nanoreinforcement of the PPSQ domains afforded the enhanced dynamic storage modulus for the nanostructured composites in comparison with the phase‐separated composites with a PPSQ concentration less than 15 wt %. In terms of thermogravimetric analysis, the organic–inorganic composites displayed improved thermal stability and flame retardancy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1093–1105, 2006  相似文献   

12.
Crystallization behavior of polypropylene/polycarbonate blends   总被引:2,自引:0,他引:2  
Crystallization behavior and morphology of polypropylene (PP)/polycarbonate (PC) blends have been studied by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). In the study of non-isothermal crystallization of the blends, the phenomenon of multiple crystallization peaks of PP/PC blends was related to the blend morphology in which PP was the dispersed phase as small droplets in the PC matrix. The phenomenon of a single crystallization peak of the PP/PC blends was related to the blend morphology in which PP was a continuous phase; in that case the crystallization peak temperatures of the blends were higher than that of the PP. The isothermal crystallization kinetics of the PP and PP/PC (80/20) blend were described by the Avrami equation. The results showed that the Avrami exponent of the PP/PC (80/20) blend was higher than that of the PP, and the crystallization rate of the PP/PC (80/20) blend was faster than that of the PP. The crystallization rate of the PP and PP/PC (80/20) blend were calculated according to the Hoffmann theory. Both the PP and PP/PC (80/20) blend had maximum crystallization rates. The temperature at the maximum crystallization rate for the PP/PC (80/20) blend was higher than that of the PP.  相似文献   

13.
This paper describes the first use of polymer-coated quantum dots (QDs) as fluorescent tracers for LSCFM imaging of phase morphology in polymer blends. Cadmium sulfide (CdS) QDs stabilized at the surface with a PS-b-PAA block copolymer are shown to be well dispersed via their polystyrene (PS) brush layer in the PS phase of solvent-cast 40/60 (w/w) PS/PMMA blends. The QDs are excluded from the PMMA phase, providing excellent fluorescence contrast for LSCFM imaging of the phase-separated blends. The presence of PS-b-PAA-stabilized QDs does not appear to affect the blend morphology, since the observed morphologies are the same when the percentage of QDs within the PS phase is varied from 10 to 50 wt %. These QD fluorescent tracers are used to characterize several aspects of blend morphology in solvent-cast 40/60 PS/PMMA blends containing PS homopolymer with either 100 (low molecular weight) or 1250 (high molecular weight) repeat units. In the PS(1250)/PMMA blends, a percolating distribution of PMMA droplets (2-25 mum) in a PS matrix is observed in the bulk, and a distinct inversion in the continuous phase is found near the glass substrate. In the PS(100)/PMMA blends, a "phase-in-phase" morphology is found, consisting of large PS domains (20-100 mum) dispersed in a PMMA continuous phase and small PMMA domains (1-2 mum) scattered throughout the larger PS droplets. The observed change in blend structure is attributed to a lower interfacial tension for the lower molecular weight PS.  相似文献   

14.
Poly(butylene terephthalate) (PBT)/polycarbonate (PC) samples, prepared via reactive blending in the presence of Ti‐ and Sm‐based catalysts, resulted in block copolymers whose block length decreased as the mixing time increased. A single homogeneous amorphous phase occurred when the blocks had monomeric sequences shorter than 10 units. Otherwise, a crystalline phase of PBT developed. Also, in poly(ethylene terephthalate) (PET)/PC blends previously studied, the miscibility was strictly correlated with the crystallizability of the system. Therefore, the miscibility of the PBT/PC and PET/PC blends was compared with respect to the tendency of the PBT and PET blocks to crystallize under isothermal conditions. The crystallization rate of the PBT/PC copolymers was faster than that of the PET/PC copolymers with similar block lengths. Accordingly, the minimum crystallizable sequence length of the PBT blocks was shorter than that of the PET blocks (18 vs 31 monomeric unit sequences). This behavior was interpreted as an effect of the more flexible PBT units, which had a greater tendency to fold and crystallize than the PET units. Therefore, PBT, the blocks of which tended to crystallize even if they were very short and phase‐separated, was characterized by a poorer compatibility with PC than that of PET. As a result, the block size had a fundamental role in determining the crystallizability and, therefore, phase behavior of the semicrystalline block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2821–2832, 2004  相似文献   

15.
 A theoretical consideration of the phase-inversion technique to prepare waterborne particles based on the experimental facts of the phase inversion process given in part 1 of this series is presented. The deformation and breakup of the water droplets dispersed in an epoxy resin phase under shear action are analyzed in terms of microrheology. The interaction and coalescence dynamics among the water droplets stabilized by an interfacial layer formed by the emulsifier molecules are discussed in terms of Derjaguin–Landau–Verwey–Overbeek theory and effective collision theory, respectively. A criterion for the completion of phase-inversion is that the attraction among the water droplets exceeds the entropic repulsion. Thus, a physical model of phase-inversion is proposed to predict the effects of some control variables on the phase-inversion process as well as the structural features of the waterborne particles, by which the experimental results could be well interpreted. It is indicated that the achievement of phase inversion is determined by the dynamic coalescence among the water droplets before the phase-inversion point (PIP). If the dynamic coalescence among the water droplets is ignored, phase inversion is achieved completely and sub- micron-sized particles are prepared. In comparison, if the dynamic coalescence is significant, phase inversion is achieved incompletely and a large complex water-in-oil-in-water structure is prepared. In the case of complete phase inversion, it is shown that the size of the waterborne particles is comparable with the size of the water droplets before the PIP. Received: 15 March 2000/Accepted: 16 May 2000  相似文献   

16.
本文利用偏光显微镜、X-射线衍射仪和示差扫描量热计研究了PET/PC共混物的形态结构。结果表明,在PET/PC共混物中,PC含量在50%以下时,PC的晶粒与PET的球晶分别分散在非晶区中,当PC的含量在50%以上时,PET的晶粒与PC的晶粒分别分散在非晶区中,随着PC含量的增加,PET晶体的完整性被破坏,晶粒变小,结晶度下降,熔点降低。  相似文献   

17.
We have used circular dichroism, hydrodynamic methods, absorbance, and fluorescence titration to study the interaction of 4-anilinopyrimido[4',5':4,5] selenolo (2,3-b)quinoline (APSQ) and 4-piperazinopyrimido[4',5':4,5] selenolo(2,3-b)quinoline (PPSQ) with DNA. The association constants of APSQ and PPSQ were of the order of 10(4)M(-1). The fluorescence properties at ionic strength 0.01M are best fit by the neighbor exclusion model, with K=0.58-9.2 x 10(4)M(-1) and an exclusion parameter of 0.9-6.4 bp. Binding to the GC-rich DNA of Micrococcus lysodeikticus was stronger than the binding to calf thymus DNA, suggest that drug binds preferentially to G+C pairs at low r. CD spectra indicate that stacking of these compounds with DNA induces a strong helicity in the usually disordered structure of this double strand. Viscosity experiments show with sonicated calf thymus DNA with PPSQ an twice increase in slope (m) as that with APSQ. PPSQ increases the T(m) for calf thymus DNA melting by approximately 10 degrees C as binding approaches saturation, with biphasic melting. The cytotoxicities of these compounds on leukemia HL-60, K-562, B16F10 melanoma and Colo-205 are quite similar and inhibition (IC(50)) was in the range of 0.39-9.80 microM. The anticancer efficacy against B16F10 melanoma has provided evidence of major anticancer activity for PPSQ. Single or multiple intraperitonial (i.p.) doses of drug proved high level activity against the subcutaneous (s.c.) grafted B16 melanoma, significantly increase in life span (ILS 139% and 170%). The aim of this study was to analyze the physiochemical properties of these compounds in an attempt to understand its superior biological activity.  相似文献   

18.
In this paper, an elastomer containing epoxy groups, ethylene‐butylacrylate‐glycidylmethacrylate (PTW), was used as toughening modifier for the poly(ethylene glycol‐co‐cyclohexane‐1,4‐dimethanol terephthalate) (PETG)/polycarbonate (PC) blends. A remarkable improvement of toughness was achieved by addition of only 5 wt% PTW. In particular, an obvious brittle–ductile (B–D) transition in impact toughness was found when the PTW content increased from 3 to 5 wt%. The toughening mechanism and observed B–D transition have been explored in detail, combining with electronic microscopy observation, melt rheological investigation and dynamic mechanical analysis (DMA). It is suggested that the B–D transition can be attributed to a better interfacial adhesion between different phases, and importantly, to a continuum percolation dispersed‐phases network formed at appropriate PTW content, in which PC particles are connected with each other by PTW phase. Our present study offers new, profound insight on the toughening mechanism for the elastomer modified amorphous/amorphous plastic blends. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
双膦胺镍/甲基铝氧烷催化降冰片烯聚合研究   总被引:3,自引:0,他引:3  
合成了一种双膦胺镍配合物N,N-双(二苯膦基)-对甲氧基苯胺二氯化镍(PNP-Ni),研究了PNP-Ni/甲基铝氧烷(MAO)体系使降冰片烯(NBE)单体按乙烯基加成聚合的催化性能,考察了各种聚合条件如温度、Al/Ni比及催化剂浓度对催化效率、单体转化率、聚合物分子量及分子量分布的影响.结果表明,该催化体系具有较高的催化效率,可达到105g PNBE/(mol Ni)数量级,所得可溶性聚合产物聚降冰片烯(PNBE)重均分子量可高达1×106以上,分子量分布窄(Mw/Mn<2).该PNBE具有很好耐热性能,其玻璃化转变温度Tg高于300℃.通过对聚合产物1H和13C-NMR分析表明,该聚合反应是单体按乙烯基配位聚合机理进行的,聚合产物PNBE的3种立体构型含量分别为[mm]=53%,[mr]=39%,[rr]=8%.  相似文献   

20.
Highly concentrated (gel) emulsions are characterised by dispersed phase volume fractions exceeding 0.74, the critical value for the most compact packing of monodispersed undistorted spheres. Their structure consists of polyhedral droplets separated by thin films of continuous phase, a structure resembling gas–liquid foams. Their rheological properties vary from elastic to viscoelastic having a gel appearance. One of the most promising applications is their use as reaction media. The recent advances in the preparation of low-density polymeric materials (solid foams, aerogels) are reviewed and new applications are described. These include the preparation of dual meso/macroporous inorganic oxide materials and the use of gel emulsions as alternative to conventional solvent media in chemical and enzyme-catalysed reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号