首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
利用太阳能光催化还原CO2和H2O到燃料和化学品是一条极具吸引力但又充满挑战性的转化途径.迄今为止,只有非常有限的光催化剂已经被报道可以在可见光照射下光催化还原CO2.局部表面等离子体共振(LSPR)现象可以被用作一种有效的开发可见光催化剂的策略.贵金属Au,Ag,Pt等的LSPR现象已经被较为广泛的研究,并应用于光催化、光热、气敏等多种领域.而低价态金属自掺杂的金属氧化物,如MoO3-x和WO3-x,也被证明具有LSPR现象,可用于开发更加廉价的可见光催化剂.本文通过简单的溶剂热法成功合成了低价态Mo自掺杂的MoO3-x纳米片催化剂,并在合成过程中原位加入TiO2纳米颗粒(TiO2-NP)和TiO2纳米棒(TiO2-NT),构建了MoO3-x-TiO2纳米复合物.电镜表征显示,MoO3-x-TiO2-NT纳米复合物中,MoO3-x纳米片和TiO2纳米管的结合更为紧密.UV-vis光谱显示,TiO2的复合不仅可以增强MoO3-x可见区的吸收强度,同时吸收峰的位置也发生了蓝移.XPS表征显示,TiO2复合后,MoO3-x中Mo5+的比例明显增加,从而提高了MoO3-x中自由电子的浓度,进而增强了LSPR现象和LSPR吸光能力,且TiO2纳米管相对TiO2纳米颗粒具有更好的促进效果.MoO3-x纳米片具有在可见光照射下光催化还原CO2的性能,CO的生成速率为2.8μmol g-1 h-1.复合TiO2纳米颗粒后,MoO3-x-TiO2-NP纳米复合物上,CO的生成速率提高到6.8μmol g-1 h-1.当复合TiO2纳米管时,光催化性能显著提高,在MoO3-x-TiO2-NT纳米复合物上,CO的生成速率可达12μmol g-1 h-1,约为MoO3-x纳米片的四倍,此外还可观测到CH4的生成.当我们将反应气氛由CO2替换成N2后,CO和CH4的生成量几乎为零,证明CO和CH4的生成主要来自CO2的光催化还原.此外,我们还考察了MoO3-x-TiO2-NT纳米复合物光催化还原CO2的催化性能稳定性,以12 h反应时间为一个循环,经3个循环反应后,催化剂的活性基本保持不变,证明该催化剂具有较好的稳定性.综上,我们通过MoO3-x纳米片和TiO2复合的策略,增强了MoO3-x纳米片的LSPR效应,提升了催化剂对可见光的吸收能力,进而提高了MoO3-x-TiO2-NT纳米复合物光催化还原CO2的性能.MoO3-x-TiO2-NT纳米复合物是一种具有发展潜力的光催化还原CO2的可见光催化剂,且该纳米复合物调变LSPR效应的策略还有望用于增强其他LSPR光催化材料的光催化性能.  相似文献   

2.
Localized surface plasmon resonance(LSPR) enhanced photocatalysis has fascinated much interest and considerable efforts have been devoted toward the development of plasmonic photocatalysts.In the past decades,noble metal nanoparticles(Au and Ag) with LSPR feature have found wide applications in solar energy conversion.Numerous metal-based photocatalysts have been proposed including metal/semiconductor heterostructures and plasmonic bimetallic or multimetallic nanostructures.However,high cost and...  相似文献   

3.
By means of a simple ion‐exchange process (using different precursors) and a light‐induced chemical reduction reaction, highly efficient Ag@AgCl plasmonic photocatalysts with various self‐assembled structures—including microrods, irregular balls, and hollow spheres—have been fabricated. All the obtained Ag@AgCl catalysts were characterized by means of X‐ray diffraction, X‐ray photoelectron spectroscopy, scanning electron microscopy, and UV‐visible diffuse reflectance spectroscopy. The effect of the different morphologies on the properties of the photocatalysts was studied. The average content of elemental Ag in Ag@AgCl was found to be about 3.2 mol %. All the catalysts show strong absorption in the visible‐light region. The obtained Ag@AgCl samples exhibit enhanced photocatalytic activity for the degradation of organic contaminants under visible‐light irradiation. The stability of the plasmonic photocatalysts was also investigated in detail.  相似文献   

4.
Copper is a low‐cost plasmonic metal. Efficient photocatalysts of copper nanoparticles on graphene support are successfully developed for controllably catalyzing the coupling reactions of aromatic nitro compounds to the corresponding azoxy or azo compounds under visible‐light irradiation. The coupling of nitrobenzene produces azoxybenzene with a yield of 90 % at 60 °C, but azobenzene with a yield of 96 % at 90 °C. When irradiated with natural sunlight (mean light intensity of 0.044 W cm−2) at about 35 °C, 70 % of the nitrobenzene is converted and 57 % of the product is azobenzene. The electrons of the copper nanoparticles gain the energy of the incident light through a localized surface plasmon resonance effect and photoexcitation of the bound electrons. The excited energetic electrons at the surface of the copper nanoparticles facilitate the cleavage of the N O bonds in the aromatic nitro compounds. Hence, the catalyzed coupling reaction can proceed under light irradiation and moderate conditions. This study provides a green photocatalytic route for the production of azo compounds and highlights a potential application for graphene.  相似文献   

5.
Localized surface plasmon resonance (LSPR) excitation of noble metal nanoparticles has been shown to accelerate and drive photochemical reactions. Here, LSPR excitation is shown to enhance the electrocatalysis of a fuel‐cell‐relevant reaction. The electrocatalyst consists of PdxAg alloy nanotubes (NTs), which combine the catalytic activity of Pd toward the methanol oxidation reaction (MOR) and the visible‐light plasmonic response of Ag. The alloy electrocatalyst exhibits enhanced MOR activity under LSPR excitation with significantly higher current densities and a shift to more positive potentials. The modulation of MOR activity is ascribed primarily to hot holes generated by LSPR excitation of the PdxAg NTs.  相似文献   

6.
采用水热法和光致还原法制备了具有等离子体共振效应的Ag@AgBr可见光催化剂,利用XRD,SEM,EDX,DRS和XPS等手段对产物的结构和性能进行表征,并研究了催化剂在可见光下对罗丹明B(RhB)的光催化降解性能,考察了催化剂的循环使用及捕获剂对Ag@AgBr光催化性能的影响.结果表明:贵金属Ag纳米粒子的表面等离子体共振效应可显著增强Ag@AgBr对可见光的吸收;催化剂对罗丹明B具有较高的可见光降解活性和稳定性,在可见光下照射90 min,对罗丹明B的降解率达95%以上,光催化剂循环使用5次仍具有良好的光催化降解活性;淬灭实验表明在Ag@AgBr降解罗丹明B过程中,吸附在催化剂表面的h+、·OH、O2·-是主要的活性物种.  相似文献   

7.
A key to realizing the sustainable society is to develop highly active photocatalysts for selective organic synthesis effectively using sunlight as the energy source. Recently, metal‐oxide‐supported gold nanoparticles (NPs) have emerged as a new type of visible‐light photocatalysts driven by the excitation of localized surface plasmon resonance of Au NPs. Here we show that visible‐light irradiation (λ>430 nm) of TiO2‐supported Au NPs with a bimodal size distribution (BM‐Au/TiO2) gives rise to the long‐range (>40 nm) electron transport from about 14 small (ca. 2 nm) Au NPs to one large (ca. 9 nm) Au NP through the conduction band of TiO2. As a result of the enhancement of charge separation, BM‐Au/TiO2 exhibits a high level of visible‐light activity for the one‐step synthesis of azobenzenes from nitrobenzenes at 25 °C with a yield greater than 95 % and a selectivity greater than 99 %, whereas unimodal Au/TiO2 (UM‐Au/TiO2) is photocatalytically inactive.  相似文献   

8.
Plasmonic catalysis has been recognised as a promising alternative to many conventional thermal catalytic processes in organic synthesis. In addition to their high activity in fine chemical synthesis, plasmonic photocatalysts are also able to maintain control of selectivity under mild conditions by utilising visible-light as an energy source. This review provides an overview of the recent advances in organic transformations with plasmonic metal nanostructures, including selective reduction, selective oxidation, cross-coupling and addition reactions. We also summarize the photocatalysts and catalytic mechanisms involving surface plasmon resonance. Finally, control of reaction pathway and strategies for tailoring product selectivity in fine chemical synthesis are discussed.  相似文献   

9.
本文发展了一种基于Ag纳米粒子(AgNPs)修饰的局域表面等离激元共振(LSPR)光纤探针,作为等离激元催化反应基底同时原位检测表面增强拉曼光谱(SERS)信号,实现反应与检测一体化。本文使用(3-氨基丙基)三甲氧基硅烷(APTMS)分子将AgNPs组装到光纤探针表面。通过调控自组装时间,可形成AgNPs均匀分布的探针。以对巯基苯胺(PATP)作为反应的模型分子,获得了较好的等离激元催化及信号检测效果。在相同光源条件下,从光纤内部激发收集所得产物的SERS信号强度为外部激发收集的12.8倍,表明内激发收集方式在反应及信号检测方面具有优势;在一定浓度范围(10~(-4)–10~(-8)mol·L~(-1))内可用该光纤探针对PATP溶液进行定量分析;运用该光纤探针开展了等离激元催化PATP分子偶联反应的原位动力学研究。该LSPR光纤探针具有较高灵敏度,对样品损伤小,可在多场合下实现原位检测,且制备简便、成本较低。还有望结合近场扫描光学显微技术进一步对样品表面进行微区等离激元催化反应及检测并得到反应的二维分布图。  相似文献   

10.
Visible light has risen to become a very important facilitator for selective radical reactions enabled by well‐cognized photocatalysts. The renaissance of visible‐light photocatalysis on this matter partly relies on integrating it with other fields of catalysis. In parallel, 2,2,6,6‐tetramethylpiperidin N‐oxide (TEMPO), a quintessential persistent radical, has a wide range of uses owing to its exceptional redox behavior, which gives rise to its latest prominence in catalysis. Therefore, integrating the catalysis of TEMPO with photocatalysis to perform visible‐light‐induced selective reactions becomes a very convenient marriage of merits. In this context, the integration of different types of photocatalysts, including metal complexes, metal‐free organic dyes, and semiconductors, with TEMPO for outstanding organic transformations will be summarized. To expand further the catalytic repertoire, the integration of TEMPOH analogues such as NHPI (N‐hydroxyphthalimide) and NHS (N‐hydroxysuccinimide) with photocatalysis will also be discussed. Hopefully, these advances will pave the way for more breakthroughs by integrating TEMPO and its analogues with photocatalysis to lead to a valuable blueprint for visible‐light‐induced selective organic transformations.  相似文献   

11.
Nanoporous silica solids can offer opportunities for hosting photocatalytic components such as various tetra‐coordinated transition metal ions to form systems referred to as “single‐site photocatalysts”. Under UV/visible‐light irradiation, they form charge transfer excited states, which exhibit a localized charge separation and thus behave differently from those of bulk semiconductor photocatalysts exemplified by TiO2. This account presents an overview of the design of advanced functional materials based on the unique photo‐excited mechanisms of single‐site photocatalysts. Firstly, the incorporation of single‐site photocatalysts within transparent porous silica films will be introduced, which exhibit not only unique photocatalytic properties, but also high surface hydrophilicity with self‐cleaning and antifogging applications. Secondary, photo‐assisted deposition (PAD) of metal precursors on single‐site photocatalysts opens up a new route to prepare nanoparticles. Thirdly, visible light sensitive photocatalysts with single and/or binary oxides moieties can be prepared so as to use solar light, the ideal energy source.  相似文献   

12.
The photocatalytic reactivities of various Ti-based photocatalysts have been investigated for various different types of reactions in order to achieve as highly efficient photocatalytic reactivities as possible. The reactivity of powdered TiO2 is dramatically enhanced by the addition of small amounts of Pt which initiates an effective charge separation of the photo-formed electrons and holes. The highly dispersed titanium oxide species prepared and encapsulated within the zeolite cavities as well as into the SiO 2 matrices exhibit high photocatalytic reactivities due to the high reactivities of their charge transfer excited states. With regard to the use of visible light, ion implantation of metal ions such as Cr or V into powdered TiO2 catalysts has been found to modify the electronic state of TiO 2 , resulting in the shift of the absorption band to longer wavelength regions, i.e., into the visible light region. The extent of the shift strongly depends on the type and concentration of the implanted metal. The present study focuses on the preparation of the photocatalysts, a detailed characterization of the active sites and their dynamics, the direct detection of the reaction intermediate species, as well as a clarification of the mechanisms behind the observed photocatalytic reactions at the molecular level. This work significantly contributes to advances in the design of photocatalysts which will be able to operate efficiently and effectively not only under UV irradiation but, most ideally, under visible light.  相似文献   

13.
Successful combinations of visible‐light photocatalysis with metal catalysis have recently enabled the development of hitherto unknown chemical reactions. Dual mechanisms from merging metal‐free photocatalysts and earth‐abundant metal catalysts are still in their infancy. We report a photo‐organo‐iron‐catalyzed cyclotrimerization of alkynes by photoredox activation of a ligand‐free Fe catalyst. The reaction operates under very mild conditions (visible light, 20 °C, 1 h) with 1–2 mol % loading of the three catalysts (dye, amine, FeCl2).  相似文献   

14.
Supported nanoparticles (NPs) of nonplasmonic transition metals (Pd, Pt, Rh, and Ir) are widely used as thermally activated catalysts for the synthesis of important organic compounds, but little is known about their photocatalytic capabilities. We discovered that irradiation with light can significantly enhance the intrinsic catalytic performance of these metal NPs at ambient temperatures for several types of reactions. These metal NPs strongly absorb the light mainly through interband electronic transitions. The excited electrons interact with the reactant molecules on the particles to accelerate these reactions. The rate of the catalyzed reaction depends on the concentration and energy of the excited electrons, which can be increased by increasing the light intensity or by reducing the irradiation wavelength. The metal NPs can also effectively couple thermal and light energy sources to more efficiently drive chemical transformations.  相似文献   

15.
Herein, we report on the structural design principle of small‐molecule organic semiconductors as metal‐free, pure organic and visible light‐active photocatalysts. Two series of electron‐donor and acceptor‐type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C?H functionalization of electron‐rich heteroaromates with malonate derivatives. A mechanistic study of the light‐induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy‐band structure, the small‐molecule organic semiconductors could offer a new class of metal‐free and visible light‐active photocatalysts for chemical reactions.  相似文献   

16.
等离激元效应在光催化体系中的集成为实现广谱光吸收提供了一个新的途径,然而等离激元热电子的较低迁移率和不确定扩散方向使得其光催化效率仍较低.等离激元金属与n型半导体接触后,其界面间会形成肖特基结.在特定波长太阳光照射下,等离激元金属将其表面等离子体能量聚集在表面自由电子上,进而产生热电子.当这些热电子具有的能量高于肖特基势垒时,热电子便可注入到半导体导带上.与此同时,半导体上的电子可以通过肖特基接触发生回流,与金属上的空穴复合,进而降低半导体-等离激元金属复合材料的光催化性能.因此,为了提高光催化效率,如何调控等离激元热电子迁移和充分利用等离激元效应是一个重要挑战.本文尝试将"表面异质结"与肖特基结相结合的复合结构,得以有效地调控等离激元热电子的迁移.在该复合结构中,金纳米颗粒和铂纳米颗粒分别作为等离激元吸光单元和助催化剂,集成在TiO_2纳米片表面.其中"表面异质结"是由TiO_2纳米片的两种不同表面晶面所构成,我们选择由{001}和{101}两组晶面组成的TiO_2纳米片作为半导体衬底.该结构中的{001}晶面导带能级高于{101}导带能级,因而电子由高能级的{001}流向低能级的{101}晶面,可以用来引导等离激元热电子从可见光响应的金纳米颗粒向TiO_2进行高效转移.通过巯基丙酸的桥联作用,将等离激元Au纳米颗粒锚定在TiO_2纳米片的{001}晶面上,获得Au-TiO_2{001}样品.另一方面,利用TiO_2纳米片自身光生电荷导向性光沉积,得到与{101}晶面结合形成的Au-TiO_2{101}样品.我们对两组样品进行光电流和光催化产氢实验对比,确认在"表面异质结"诱导下Au-TiO_2{001}样品中Au产生的光生热电子可以更好地注入到TiO_2纳米片导带上.我们进一步通过光沉积Pt纳米颗粒来判定光生电子所能到达的区域,验证了以上结论.与此同时,肖特基结由铂纳米颗粒与TiO_2纳米片所形成,可以促使电子由TiO_2向铂纳米颗粒进行转移,而避免发生向金纳米颗粒的反向迁移,从而在Au-TiO_2体系中实现高效的单向载流子转移.基于该设计,等离激元光催化剂实现了明显改善的全谱光催化产氢性能.本文为全谱光催化的复合结构理性设计提供了一个新的思路.  相似文献   

17.
The efforts to produce photocatalysts operating efficiently under visible light have led to a number of plasmonic photocatalysts, in which noble metal nanoparticles are deposited on the surface of polar semiconductor or insulator particles. In the metal-semiconductor composite photocatalysts, the noble metal nanoparticles act as a major component for harvesting visible light due to their surface plasmon resonance while the metal-semiconductor interface efficiently separates the photogenerated electrons and holes. In this article, we survey various plasmonic photocatalysts that have been prepared and characterized in recent years.  相似文献   

18.
The ability of plasmonic nanostructures to efficiently harvest light energy and generate energetic hot carriers makes them promising materials for utilization in photocatalytic water spitting.Apart from the traditional Au and Ag based plasmonic photocatalysts,more recently the noble-metal-free alternative plasmonic materials have attracted ever-increasing interest.Here we report the first use of plasmonic zirconium nitride(ZrN) nanoparticles as a promising photocatalyst for water splitting.Highl...  相似文献   

19.
《化学:亚洲杂志》2017,12(23):2980-2984
Two‐dimensional (2D) semiconductors have recently emerged as a remarkable class of plasmonic alternative to conventional noble metals. However, tuning of their plasmonic resonances towards different wavelengths in the visible‐light region with physical or chemical methods still remains challenging. In this work, we design a simple room‐temperature chemical reaction route to synthesize amorphous molybdenum oxide (MoO3−x ) nanodots that exhibit strong localized surface plasmon resonances (LSPR) in the visible and near‐infrared region. Moreover, tunable plasmon resonances can be achieved in a wide range with the changing surrounding solvent, and accordingly the photoelectrocatalytic activity can be optimized with the varying LSPR peaks. This work boosts the light–matter interaction at the nanoscale and could enable photodetectors, sensors, and photovoltaic devices in the future.  相似文献   

20.
Among photothermal, photovoltaic and photochemical techniques, photochemistry is superior in energy storage and transportation by converting photons into chemical fuels. Recently plasmonic photocatalysis, based on localized surface plasmon resonance (LSPR) generated from noble metal nanostructures, has attracted much attention. It promotes photochemical reaction efficiency by optimizing the solar spectrum absorption and the surface reaction kinetics. The deeper understanding is in urgent need for the development of novel plasmonic photocatalysts. Surface-enhanced Raman spectroscopy (SERS), which is also originated from the LSPR effect, provides an excellent opportunity to probe and monitor plasmonic photoreactions in situ and in real-time, with a very high surface sensitivity and energy resolution. Here, fundamentals of plasmonic photocatalysis and SERS are first presented based on their connections to the LSPR effect. Following by a validity analysis, latest studies of SERS applied for the plasmon mediated photochemical reaction are reviewed, focusing on the reaction kinetics and mechanism exploration. Finally, limitations of the present study, as well as the future research directions, are briefly analyzed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号