首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 214 毫秒
1.
The nucleophilicity of the [Pt(2)S(2)] core in [[Ph(2)P(CH(2))(n)PPh(2)]Pt(mu-S)(2)Pt[Ph(2)P(CH(2))(n)PPh(2)]] (n = 3, dppp (1); n = 2, dppe (2)) metalloligands toward the CH(2)Cl(2) solvent has been thoroughly studied. Complex 1, which has been obtained and characterized by X-ray diffraction, is structurally related to 2 and consists of dinuclear molecules with a hinged [Pt(2)S(2)] central ring. The reaction of 1 and 2 with CH(2)Cl(2) has been followed by means of (31)P, (1)H, and (13)C NMR, electrospray ionization mass spectrometry, and X-ray data. Although both reactions proceed at different rates, the first steps are common and lead to a mixture of the corresponding mononuclear complexes [Pt[Ph(2)P(CH(2))(n)PPh(2)](S(2)CH(2))], n = 3 (7), 2 (8), and [Pt[Ph(2)P(CH(2))(n)PPh(2)]Cl(2)], n = 3 (9), 2 (10). Theoretical calculations give support to the proposed pathway for the disintegration process of the [Pt(2)S(2)] ring. Only in the case of 1, the reaction proceeds further yielding [Pt(2)(dppp)(2)[mu-(SCH(2)SCH(2)S)-S,S']]Cl(2) (11). To confirm the sequence of the reactions leading from 1 and 2 to the final products 9 and 11 or 8 and 10, respectively, complexes 7, 8, and 11 have been synthesized and structurally characterized. Additional experiments have allowed elucidation of the reaction mechanism involved from 7 to 11, and thus, the origin of the CH(2) groups that participate in the expansion of the (SCH(2)S)(2-) ligand in 7 to afford the bridging (SCH(2)SCH(2)S)(2-) ligand in 11 has been established. The X-ray structure of 11 is totally unprecedented and consists of a hinged [(dppp)Pt(mu-S)(2)Pt(dppp)] core capped by a CH(2)SCH(2) fragment.  相似文献   

2.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(11):2602-2607
The new compounds K(2)TiCu(2)S(4), Rb(2)TiCu(2)S(4), Rb(2)TiAg(2)S(4), Cs(2)TiAg(2)S(4), and Cs(2)TiCu(2)Se(4) have been synthesized by the reactions of A(2)Q(3) (A = K, Rb, Cs; Q = S, Se) with Ti, M (M = Cu or Ag), and Q at 823 K. The compounds Rb(2)TiCu(2)S(4), Cs(2)TiAg(2)S(4), and Cs(2)TiCu(2)Se(4) are isostructural. They crystallize with two formula units in space group P4(2)/mcm of the tetragonal system in cells of dimensions a = 5.6046(4) A, c = 13.154(1) A for Rb(2)TiCu(2)S(4), a =6.024(1) A, c = 13.566(4) A for Cs(2)TiAg(2)S(4), and a =5.852(2) A, c =14.234(5) A for Cs(2)TiCu(2)Se(4) at 153 K. Their structure is closely related to that of Cs(2)ZrAg(2)Te(4) and comprises [TiM(2)Q(4)(2)(-)] layers, which are separated by alkali metal atoms. The [TiM(2)Q(4)(2)(-)] layer is anti-fluorite-like with both Ti and M atoms tetrahedrally coordinated to Q atoms. Tetrahedral coordination of Ti(4+) is rare in the solid state. On the basis of unit cell and space group determinations, the compounds K(2)TiCu(2)S(4) and Rb(2)TiAg(2)S(4) are isostructural with the above compounds. The band gaps of K(2)TiCu(2)S(4), Rb(2)TiCu(2)S(4), Rb(2)TiAg(2)S(4), and Cs(2)TiAg(2)S(4) are 2.04, 2.19, 2.33, and 2.44 eV, respectively, as derived from optical measurements. From band-structure calculations, the optical absorption for an A(2)TiM(2)Q(4) compound is assigned to a transition from an M d and Q p valence band (HOMO) to a Ti 3d conduction band.  相似文献   

3.
Er(3+)/Yb(3+) co-doped 60Bi(2)O(3)-(40 - x)B(2)O(3)-xGeO(2) (BBG; x=0, 5, 10, 15 mol%) glasses that are suitable for fiber lasers, amplifiers have been fabricated and characterized. The absorption spectra, emission spectra, and lifetime of the (4)I(13/2) level and quantum efficiency of Er(3+):(4)I(13/2) --> (4)I(15/2) transition were measured and calculated. With the substitution of GeO(2) for B(2)O(3), both Delta lambda(eff) and sigma(e) decrease from 75 to 71 nm and 9.88 to 8.12 x 10(-21) cm(2), respectively. The measured lifetime of the (4)I(13/2) level and quantum efficiency of Er(3+):(4)I(13/2) --> (4)I(15/2) transition increase from 1.18 to 1.5 ms and 36.2% to 43.2%, respectively. The emission spectra of Er(3+):(4)I(13/2) --> (4)I(15/2) transition was also analyzed using a peak-fit routine, and an equivalent four-level system was proposed to estimate the stark splitting for the (4)I(15/2) and (4)I(13/2) levels of Er(3+) in the BBG glasses. The results indicate that the (4)I(13/2) --> (4)I(15/2) emission of Er(3+) can be exhibit a considerable broadening due to a significant enhance the peak A, and D emission.  相似文献   

4.
The coordination chemistry of silver(I) with the nitrogen-bridged ligands (C(6)H(5))(2)PN(R)P(C(6)H(5))(2) [R = H (dppa); R = CH(3) (dppma)] has been investigated by (31)P NMR and electrospray mass spectrometry (ESMS). Species observed by (31)P NMR include Ag(2)(mu-dppa)(2+), Ag(2)(mu-dppa)(2)(2+), Ag(2)(mu-dppa)(3)(2+), Ag(2)(mu-dppma)(2+), Ag(2)(mu-dppma)(2)(2+), and Ag(eta(2)-dppma)(2)(+). Species observed by ESMS at low cone voltages were Ag(2)(dppa)(2)(2+), Ag(2)(dppa)(3)(2+), Ag(2)(dppma)(2)(2+), and Ag(dppma)(2)(+). (C(6)H(5))(2)PN(CH(3))P(C(6)H(5))(2) showed a strong tendency to chelate, while (C(6)H(5))(2)PN(H)P(C(6)H(5))(2) preferred to bridge. Differences in the bridging versus chelating behavior of the ligands are assigned to the Thorpe-Ingold effect, where the methyl group on nitrogen sterically interacts with the phenyl groups on phosphorus. The crystal structure of the three-coordinate dinuclear silver(I) complex (Ag(2)[(C(6)H(5))(2)PN(H)P(C(6)H(5))(2)](3))(BF(4))(2) has been determined. Bond distances include Ag-Ag = 2.812(1) A, Ag(1)-P(av) = 2.492(3) A, and Ag(2)-P(av) = 2.509(3) A. The compound crystallizes in the monoclinic space group Cc at 294 K, with a = 18.102(4)(o), Z = 4, V = 7261(3) A(3), R = 0.0503, and R(W) = 0.0670.  相似文献   

5.
The solvothermal reaction of (N(C(4)H(9))(4))(2)[Re(2)Cl(8)] with trifluoroacetic acid and acetic anhydride leads to the new rhenium trifluoroacetate dimer N(C(4)H(9))(4)[Re(2)(OOCCF(3))Cl(6)] (1) and to the rhenium carbonyl dimer Re(2)(mu(2)-Cl)(2)(CO)(8) as the rhenium-reduced byproduct. The reaction of the precursor complex, N(C(4)H(9))(4)[Re(2)(OOCCF(3))Cl(6)] (1), with the organometallic carboxylic acid (CO)(6)Co(2)HCCCOOH leads to the cluster of clusters compound Re(2)(OOCCCHCo(2)(CO)(6))(4)Cl(2) (2), which has the dimer structure of Re(2)(OOCR)(4)Cl(2). Cyclic voltammetric measurements show that Re(2)(OOCCCHCo(2)(CO)(6))(4)Cl(2) (2) has one reduction centered on the dirhenium core and a reduction centered on the cobalt atoms. DFT calculations have been used to rationalize the observed displacements of the voltammetric signals in Re(2)(OOCCCHCo(2)(CO)(6))(4)Cl(2) (2) compared to the parent ligand (CO)(6)Co(2)HCCCOOH and rhenium pivalate.  相似文献   

6.
The 1 (2)A(1), 1 (2)B(2), and 1 (2)A(2) electronic states of the SO(2) (+) ion have been studied using multiconfiguration second-order perturbation theory (CASPT2) and two contracted atomic natural orbital basis sets, S[6s4p3d1f]/O[5s3p2d1f] (ANO-L) and S[4s3p2d]/O[3s2p1d] (ANO-S), and the three states were considered to correspond to the observed X, B, and A states, respectively, in the previous experimental and theoretical studies. Based on the CASPT2/ANO-L adiabatic excitation energy calculations, the X, A, and B states of SO(2) (+) are assigned to 1 (2)A(1), 1 (2)B(2), and 1 (2)A(2), respectively, and our assignments of the A and B states are contrary to the previous assignments (A to (2)A(2) and B to (2)B(2)). The CASPT2/ANO-L energetic calculations also indicate that the 1 (2)A(1), 1 (2)B(2), and 1 (2)A(2) states are, respectively, the ground, first excited, and second excited states at the ground-state (1 (2)A(1)) geometry of the ion and at the geometry of the ground-state SO(2) molecule. Based on the CASPT2/ANO-L results for the geometries, we realize that the experimental geometries (determined by assuming the bond lengths to be the same as the neutral ground state of SO(2)) were not accurate. The CASPT2/ANO-S calculations for the potential energy curves as functions of the OSO angle confirm that the 1 (2)B(2) and 1 (2)A(2) states are the results of the Renner-Teller effect in the degenerate (2)Pi(g) state at the linear geometry, and it is clearly shown that the 1 (2)B(2) curve, as the lower component of the Renner splitting, lies below the 1 (2)A(2) curve. The UB3LYP/cc-pVTZ adiabatic excitation energy calculations support the assignments (A to (2)B(2) and B to (2)A(2)) based on the CASPT2/ANO-L calculations.  相似文献   

7.
Reduction of CpMoCl(4) with 3.1 equiv of Na/Hg amalgam (1.0% w/w) in the presence of 1 equiv of dmpe and 1 equiv of trimethylphosphine afforded the molybdenum(II) chloride complex Cp(dmpe)(PMe(3))MoCl (1) (Cp = 1,2,3,4,5-pentamethylcyclopentadienyl, dmpe = 1,2-bis(dimethylphosphino)ethane). Alkylation of 1 with PhCH(2)MgCl proceeded in high yield to liberate PMe(3) and give the 18-electron pi-benzyl complex Cp(dmpe)Mo(eta(3)-CH(2)Ph) (2). Variable temperature NMR experiments provided evidence that 2 is in equilibrium with its 16-electron eta(1)-benzyl isomer [Cp(dmpe)Mo(eta(1)-CH(2)Ph)]. This was further supported by reaction of 2 with CO to yield the carbonyl benzyl complex Cp(dmpe)(CO)Mo(eta(1)-CH(2)Ph) (3). Complex 2 was found to react with disubstituted silanes H(2)SiRR' (RR' = Me(2), Et(2), MePh, and Ph(2)) to form toluene and the silylene complexes Cp(dmpe)Mo(H)(SiRR') (4a: RR' = Me(2); 4b: RR' = Et(2); 4c: RR' = MePh; 4d: RR' = Ph(2)). Reactions of 2 with monosubstituted silanes H(3)SiR (R = Ph, Mes, Mes = 2,4,6-trimethylphenyl) produced rare examples of hydrosilylene complexes Cp(dmpe)Mo(H)Si(H)R (5a: R = Ph; 5b: R = Mes; 5c: R = CH(2)Ph). Reactivity of complexes 4a-c and 5a-d is dominated by 1,2-hydride migration from metal to silicon, and these complexes possess H.Si bonding interactions, as supported by spectroscopic and structural data. For example, the J(HSi) coupling constants in these species range in value from 30 to 48 Hz and are larger than would be expected in the absence of H.Si bonding. A neutron diffraction study on a single crystal of diethylsilylene complex 4b unequivocally determined the hydride ligand to be in a bridging position across the molybdenum-silicon bond (Mo-H 1.85(1) A, Si-H 1.68(1) A). The synthesis and reactivity properties of these complexes are described in detail.  相似文献   

8.
Reaction of the 17-electron radical (*)Cr(CO)(3)Cp* (Cp* = C(5)Me(5)) with 0.5 equiv of 2-aminophenyl disulfide [(o-H(2)NC(6)H(4))(2)S(2)] results in rapid oxidative addition to form the initial product (o-H(2)N)C(6)H(4)S-Cr(CO)(3)Cp*. Addition of a second equivalent of (*)Cr(CO)(3)Cp* to this solution results in the formation of H-Cr(CO)(3)Cp* as well as (1)/(2)[[eta(2)-o-(mu-NH)C(6)H(4)S]CrCp*](2). Spectroscopic data show that (o-H(2)N)C(6)H(4)S-Cr(CO)(3)Cp* loses CO to form [eta(2)-(o-H(2)N)C(6)H(4)S]Cr(CO)(2)Cp*. Attack on the N-H bond of the coordinated amine by (*)Cr(CO)(3)Cp* provides a reasonable mechanism consistent with the observation that both chelate formation and oxidative addition of the N-H bond are faster under argon than under CO atmosphere. The N-H bonds of uncoordinated aniline do not react with (*)Cr(CO)(3)Cp*. Reaction of the 2 mol of (*)Cr(CO)(3)Cp* with 1,2-benzene dithiol [1,2-C(6)H(4)(SH)(2)] yields the initial product (o-HS)C(6)H(4)S-Cr(CO)(3)Cp and 1 mol of H-Cr(CO)(3)Cp*. Addition of 1 equiv more of (*)Cr(CO)(3)Cp to this solution also results in the formation of 1 equiv of H-Cr(CO)(3)Cp*, as well as the dimeric product (1)/(2)[[eta(2)-o-(mu-S)C(6)H(4)S]CrCp*](2). This reaction also occurs more rapidly under Ar than under CO, consistent with intramolecular coordination of the second thiol group prior to oxidative addition. The crystal structures of [[eta(2)-o-(mu-NH)C(6)H(4)S]CrCp*](2) and [[eta(2)-o-(mu-S)C(6)H(4)S]CrCp*](2) are reported.  相似文献   

9.
The cyclophosphazene tetrahydrazide spiro-N(3)P(3)[O(2)C(12)H(8)][N(Me)NH(2)](4) (L) functions as a multisite coordination ligand and affords L(2)CoCl(3).2CH(3)OH (4), L(2)Ni(NO(3))(2).2CHCl(3).2.5H(2)O (5), L(2)Zn(NO(3))(2).2CH(3)CN.2H(2)O (6), and L(2)Cd(NO(3))(2) (7). Each of the cyclophosphazene ligands that is involved in coordination to the metal functions as a non-geminal-N(3) donor coordinating through one ring nitrogen atom and two non-geminal-NH(2) nitrogen atoms. The coordination geometry around the metal ion in 4-6 is approximately octahedral while it is severely distorted in the case of 7.  相似文献   

10.
A zero-valent [M(Ph(2)PCH(2)CH(2)PPh(2))(2)] moiety (M = Mo, W) generated in situ by dissociation of the N(2) ligands in trans-[M(N(2))(2)(Ph(2)PCH(2)CH(2)PPh(2))(2)] can activate pi-accepting organic molecules including isocyanides and nitriles, which undergo the electrophilic attack caused by a strong pi-donation from a zero-valent metal center. Cleavage of a variety of C-X bonds (X = H, C, N, O, P, halogen) also occurs at their electron-rich sites through oxidative addition to form reactive intermediates, which subsequently degradate to yield smaller molecules either bound to or dissociated from the metal center. The mechanism is substantiated unambiguously by isolation of numerous intermediate stages.  相似文献   

11.
The synthesis of molecular cluster pairs is a challenge for coordination chemists due to the potential applications of these species in molecular spintronics or quantum computing. The ligand H(4)L, 1,3-bis-(3-oxo-3-(2-hydroxyphenyl)-propionyl)-2-methoxybenzene, has been successfully used to obtain a series of such complexes using the basic Fe(III) trinuclear carboxylates as starting materials. Synthetic control has allowed the isolation of the two molecular cluster pairs that form the composite [Fe(4)O(2)(PhCO(2))(6)(H(2)L)(pz)](2)[Fe(3)O(PhCO(2))(5)(py)(H(2)L)](2) (1). The dimers of trinuclear units, [Fe(3)O(PhCO(2))(5)(H(2)O)(H(2)L)](2) (2) and [Fe(3)O(o-MePhCO(2))(5)(H(2)L)(py)](2) (3), and the dimers of tetranuclear units, [Fe(4)O(2)(PhCO(2))(6)(H(2)L)(pz)](2) (4) and [Fe(4)O(2)(o-MePhCO(2))(6)(H(2)L)(pz)](2) (5), are presented here. The magnetic properties of the reported aggregates show that they are pairs of semi-independent clusters weakly interacting magnetically as required for two-qubit quantum gates.  相似文献   

12.
Osmium dioxide tetrafluoride, cis-OsO(2)F(4), reacts with the strong fluoride ion acceptors AsF(5) and SbF(5) in anhydrous HF and SbF(5) solutions to form orange salts. Raman spectra are consistent with the formation of the fluorine-bridged diosmium cation F(cis-OsO(2)F(3))(2)(+), as the AsF(6)(-) and Sb(2)F(11)(-) salts, respectively. The (19)F NMR spectra of the salts in HF solution are exchange-averaged singlets occurring at higher frequency than those of the fluorine environments of cis-OsO(2)F(4). The F(cis-OsO(2)F(3))(2)(+)Sb(2)F(11)(-) salt crystallizes in the orthorhombic space group Imma. At -107 degrees C, a = 12.838(3) ?, b = 10.667(2) ?, c = 11.323(2) ?, V = 1550.7(8) ?(3), and Z = 4. Refinement converged with R = 0.0469 [R(w) = 0.0500]. The crystal structure consists of discrete fluorine-bridged F(cis-OsO(2)F(3))(2)(+) and Sb(2)F(11)(-) ions in which the fluorine bridge of the F(cis-OsO(2)F(3))(2)(+) cation is trans to an oxygen atom (Os-O 1.676 ?) of each OsO(2)F(3) group. The angle at the bridge is 155.2(8) degrees with a bridging Os---F(b) distance of 2.086(3) ?. Two terminal fluorine atoms (Os-F 1.821 ?) are cis to the two oxygen atoms (Os-O 1.750 ?), and two terminal fluorine atoms of the OsO(2)F(3) group are trans to one another (1.813 ?). The OsO(2)F(3)(+) cation was characterized by (19)F NMR and by Raman spectroscopy in neat SbF(5) solution but was not isolable in the solid state. The NMR and Raman spectroscopic findings are consistent with a trigonal bipyramidal cation in which the oxygen atoms and a fluorine atom occupy the equatorial plane and two fluorine atoms are in axial positions. Density functional theory calculations show that the crystallographic structure of F(cis-OsO(2)F(3))(2)(+) is the energy-minimized structure and the energy-minimized structures of the OsO(2)F(3)(+) cation and ReO(2)F(3) are trigonal bipyramidal having C(2)(v)() point symmetry. Attempts to prepare the OsOF(5)(+) cation by oxidative fluorination of cis-OsO(2)F(4) with KrF(+)AsF(6)(-) in anhydrous HF proved unsuccessful.  相似文献   

13.
The two clusters [8,8-(eta(2)-dppm)-8-(eta(1)-dppm)-nido-8,7-RhSB(9)H(10)] (1) and [9,9-(eta(2)-dppm)-9-(eta(1)-dppm)-nido-9,7,8-RhC(2)B(8)H(11)] (2) (dppm = PPh(2)CH(2)PPh(2)), both of which contain pendant PPh(2) groups, react with BH(3).thf to afford the species [8,8-eta(2)-(eta(2)-(BH(3)).dppm)-nido-8,7-RhSB(9)H(10)] (3) and [9,9-eta(2)-(eta(2)-(BH(3)).dppm))-nido-9,7,8-RhC(2)B(8)H(11)] (4), respectively. These two species are very similar in that they both contain the bidentate ligand [(BH(3)).dppm], which coordinates to the Rh center via a PPh(2) group and also via a eta(2)-BH(3) group. Thus, the B atom in the BH(3) group is four-coordinate, bonded to Rh by two bridging hydrogen atoms, to a terminal H atom, and to a PPh(2) group. At room temperature, the BH(3) group is fluxional; the two bridging H atoms and the terminal H atom are equivalent on the NMR time scale. The motion is arrested at low temperature with DeltaG++ = ca. 37 and 42 kJ mol(-1), respectively, for 3 and 4. Both species are characterized completely by NMR and mass spectral measurements as well as by elemental analysis and single-crystal structure determinations.  相似文献   

14.
The new tin(IV) species (CH(3))(2)SnCl(OTeF(5)) was prepared via either the solvolysis of (CH(3))(3)SnCl in HOTeF(5) or the reaction of (CH(3))(3)SnCl with ClOTeF(5). It was characterized by NMR and vibrational spectroscopy, mass spectrometry, and single crystal X-ray diffraction. (CH(3))(2)SnCl(OTeF(5)) crystallizes in the monoclinic space group P2(1)/n (a = 5.8204(8) A, b =10.782(1) A, c =15.493(2) A, beta = 91.958(2) degrees, V = 971.7(2) A(3), Z = 4). NMR spectroscopy of (CH(3))(3)SnX, prepared from excess Sn(CH(3))(4) and HX (X = OTeF(5) or N(SO(2)CF(3))(2)), revealed a tetracoordinate tin environment using (CH(3))(3)SnX as a neat liquid or in dichloromethane-d(2) (CD(2)Cl(2)) solutions. In acetone-d(6) and acetonitrile-d(3) (CD(3)CN) solutions, the tin atom in (CH(3))(3)SnOTeF(5) was found to extend its coordination number to five by adding one solvent molecule. In the strong donor solvent DMSO, the Sn-OTeF(5) bond is broken and the (CH(3))(3)Sn(O=S(CH(3))(2))(2)(+) cation and the OTeF(5)(-) anion are formed. (CH(3))(3)SnOTeF(5) and (CH(3))(3)SnN(SO(2)CF(3))(2) react differently with water. While the Te-F bonds in the OTeF(5) group of (CH(3))(3)SnOTeF(5) undergo complete hydrolysis that results in the formation of [(CH(3))(3)Sn(H(2)O)(2)](2)SiF(6), (CH(3))(3)SnN(SO(2)CF(3))(2) forms the stable hydrate salt [(CH(3))(3)Sn(H(2)O)(2)][N(SO(2)CF(3))(2)]. This salt crystallizes in the monoclinic space group P2(1)/c (a = 7.3072(1) A, b =13.4649(2) A, c =16.821(2) A, beta = 98.705(1) degrees, V = 1636.00(3) A(3), Z = 4) and was also characterized by NMR and vibrational spectroscopy.  相似文献   

15.
The dehydrocoupling of the sterically hindered phosphine-borane adduct tBu(2)PH.BH(3) above 140 degrees C is catalyzed by the rhodium complexes [Rh(1,5-cod)(2)][OTf] or Rh(6)(CO)(16) to give the four-membered chain tBu(2)PH-BH(2)-tBu(2)P-BH(3) (1), which was isolated in 60% yield and characterized by multinuclear NMR spectroscopy, mass spectrometry, and elemental analysis. Thermolysis of 1 in the temperature range 175-180 degrees C led to partial decomposition and the formation of tBu(2)PH.BH(3). When the dehydrocoupling of tBu(2)PH.BH(3) was performed in the presence of [[Rh(mu-Cl)(1,5-cod)](2)] or RhCl(3) hydrate, the chlorinated compound tBu(2)PH-BH(2)-tBu(2)P-BH(2)Cl (2) was formed which could not be obtained free of 1. The molecular structures of tBu(2)PH.BH(3), tBu(2)PH-BH(2)-tBu(2)P-BH(3) (1), and tBu(2)PH-BH(2)-tBu(2)P-BH(2)Cl (2) together with 1 were determined by single-crystal X-ray diffraction studies.  相似文献   

16.
The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta = 94.416(1) degrees, Z = 4.  相似文献   

17.
The reaction of [AuCl(PR(3))] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] in refluxing ethanol proceeds with partial degradation (removal of a boron atom adjacent to carbon) of the closo species to give [Au{(PPh(2))(2)C(2)B(9)H(10)}(PR(3))] [PR(3) = PPh(3) (1), PPh(2)Me (2), PPh(2)(4-Me-C(6)H(4)) (3), P(4-Me-C(6)H(4))(3) (4), P(4-OMe-C(6)H(4))(3) (5)]. Similarly, the treatment of [Au(2)Cl(2)(&mgr;-P-P)] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] under the same conditions leads to the complexes [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-P-P)] [P-P = dppe = 1,2-bis(diphenylphosphino)ethane (6), dppp = 1,3-bis(diphenylphosphino)propane (7)], where the dppe or dppp ligands bridge two gold nido-diphosphine units. The reaction of 1 with NaH leads to removal of one proton, and further reaction with [Au(PPh(3))(tht)]ClO(4) gives the novel metallocarborane compound [Au(2){(PPh(2))(2)C(2)B(9)H(9)}(PPh(3))(2)] (8). The structure of complexes 1 and 7 have been established by X-ray diffraction. [Au{(PPh(2))(2)C(2)B(9)H(10)}(PPh(3))] (1) (dichloromethane solvate) crystallizes in the monoclinic space group P2(1)/c, with a = 17.326(3) ?, b = 20.688(3) ?, c = 13.442(2) ?, beta = 104.710(12) degrees, Z = 4, and T = -100 degrees C. [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-dppp)] (7) (acetone solvate) is triclinic, space group P&onemacr;, a = 13.432(3) ?, b = 18.888(3) ?, c = 20.021(3) ?, alpha = 78.56(2) degrees, beta = 72.02(2) degrees, gamma = 73.31(2) degrees, Z = 2, and T = -100 degrees C. In both complexes the gold atom exhibits trigonal planar geometry with the 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate(1-) acting as a chelating ligand.  相似文献   

18.
The new bitopic, bis(1-pyrazolyl)methane-based ligand o-C6H4[CH2OCH2CH(pz)2]2 (L2, pz = pyrazolyl ring) is prepared from the reaction of (pz)2CHCH2OH (obtained from the reduction of (pz)2CHCOOH with BH3.S(CH3)2) with NaH, followed by the addition of alpha,alpha'-dibromo-o-xylene. The reaction of L2 with AgPF6 or AgO3SCF3 yields {o-C6H4[CH2OCH2CH(pz)2]2(AgPF6)}n or {o-C6H4[CH2OCH2CH(pz)2]2(AgO3SCF3)}n, respectively. Both compounds in the solid state have tetrahedral silver(I) centers arranged in a 1D coordination polymer network. The analogous ligand based on tris(1-pyrazolyl)methane units, o-C6H4[CH2OCH2C(pz)3]2 (L3), reacts with AgO3SCF3 to form a similar coordination polymer, {o-C6H4[CH2OCH2C(pz)3]2(AgO3SCF3)}n. In this case, each tris(pyrazolyl)methane unit in L3 adopts the kappa2-kappa0 bonding mode. Crystallization of a 3:1 mixture of AgO3SCF3 and L3 yields {o-C6H4[CH2OCH2C(pz)3]2(AgO3SCF3)2}n, in which the tris(1-pyrazolyl)methane units adopt a kappa2-kappa1 coordination mode.  相似文献   

19.
Wozniak M  Nowogrocki G 《Talanta》1979,26(12):1135-1141
The acids under study differed from one another in length of the carbon chain [N + H(3)(CH(2))(n)PO(3)H(-) for n = 1, 2, 3], substitution on the nitrogen atom [R(1)R(2)N + HCH(2)PO(3)H(-) for R(1) = H; R(2) = Me, Et and R(1) = R(2)= Me, Et] or extent of branching on the carbon atom adjacent to functional groups [N + H(3)CR(3)R(4)PO(3)H(-) for R(3) = H; R(4) = Me, Et, nPr, iPr, nBu and R(3) = R(4) = Me]. Acidity constants and overall stability constants of complexes formed with Ca(II), Mg(II), Co(II), Ni(II), Cu(II), Zn(II) were obtained with the multiparametric refinement programs MUPROT and MUCOMP, applied to potentiometric data, obtained at 25 degrees , in a 0.1M potassium nitrate medium. In the most general case, the existing species are MHA(+), MA, M(OH)A(-), MH(2)A(2), MHA(-)(2) and MA(2-)(2), where A(2-) stands for the fully ionized ligand; preliminary examination of results points out some predominant microscopic forms.  相似文献   

20.
Crossed molecular beams experiments have been utilized to investigate the reaction dynamics between two closed shell species, i.e. the reactions of tricarbon molecules, C(3)(X(1)Sigma(g)(+)), with allene (H(2)CCCH(2); X(1)A(1)), and with methylacetylene (CH(3)CCH; X(1)A(1)). Our investigations indicated that both these reactions featured characteristic threshold energies of 40-50 kJ mol(-1). The reaction dynamics are indirect and suggested the reactions proceeded via an initial addition of the tricarbon molecule to the unsaturated hydrocarbon molecules forming initially cyclic reaction intermediates of the generic formula C(6)H(4). The cyclic intermediates isomerize to yield eventually the acyclic isomers CH(3)CCCCCH (methylacetylene reaction) and H(2)CCCCCCH(2) (allene reaction). Both structures decompose via atomic hydrogen elimination to form the 1-hexene-3,4-diynyl-2 radical (C(6)H(3); H(2)CCCCCCH). Future flame studies utilizing the Advanced Light Source should therefore investigate the existence of 1-hexene-3,4-diynyl-2 radicals in high temperature methylacetylene and allene flames. Since the corresponding C(3)H(3), C(4)H(3), and C(5)H(3) radicals have been identified via their ionization potentials in combustion flames, the existence of the C(6)H(3) isomer 1-hexene-3,4-diynyl-2 can be predicted as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号