首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Flamvelutpenoids A–D ( 1 – 4 ), four new cuparene‐type sesquiterpenes, were isolated from the solid culture of Flammulina velutipes. Their structures were elucidated by NMR experiments. The absolute configurations of 1 and 2 were assigned via the circular dichroism data of the [Rh2(OCOCF3)4] complex, whereas that of C(3) of 3 was determined by applying the octant rule for the α,β‐unsaturated ketone moiety. Compounds 1 – 4 showed weak antibacterial activity against Escherichia coli, Bacillus subtilis, and methicillin‐resistant Staphylococcus aureus with MIC values larger than 100 μM .  相似文献   

2.
Asprellols A–C ( 1 – 3 , resp.), three new 24‐nortriterpenoids, were isolated from the CHCl3‐soluble fraction of 95% EtOH extract of the roots of Ilex asprella, together with a known nortriterpenoid. The structures of the new compounds were elucidated as 2,6β,20β‐trihydroxy‐3‐oxo‐11α,12α‐epoxy‐24‐norursa‐1,4‐dien‐28,13β‐olide ( 1 ), 2,6β‐dihydroxy‐3‐oxo‐11α,12α‐epoxy‐24‐norursa‐1,4,20(30)‐trien‐28,13β‐olide ( 2 ), and 2,6β‐dihydroxy‐3‐oxo‐11α,12α‐epoxy‐24‐noroleana‐1,4‐dien‐28,13β‐olide ( 3 ) on the basis of spectroscopic analyses.  相似文献   

3.
Four new 9,10‐secocycloartane (=9,19‐cyclo‐9,10‐secolanostane) triterpenoidal saponins, named huangqiyenins G–J ( 1 – 4 , resp.), were isolated from Astragalus membranaceus Bunge leaves. The acid hydrolysis of 1 – 4 with 1M aqueous HCl yielded D ‐glucose, which was identified by GC analysis after treatment with L ‐cysteine methyl ester hydrochloride. The structures of 1 – 4 were established by detailed spectroscopic analysis as (3β,6α,10α,16β,24E)‐3,6‐bis(acetyloxy)‐10,16‐dihydroxy‐12‐oxo‐9,19‐cyclo‐9,10‐secolanosta‐9(11),24‐dien‐26‐yl β‐D ‐glucopyranoside ( 1 ), (3β,6a,10α,24E)‐3,6‐bis(acetyloxy)‐10‐hydroxy‐12,16‐dioxo‐9,19‐cyclo‐9,10‐secolanosta‐9(11),24‐dien‐26‐yl β‐D ‐glucopyranoside ( 2 ), (3β,6α,9α,10α,16β,24E)‐3,6‐bis(acetyloxy)‐9,10,16‐trihydroxy‐9,19‐cyclo‐9,10‐secolanosta‐11,24‐dien‐26‐yl β‐D ‐glucopyranoside ( 3 ), and (3β,6α,10α,24E)‐3,6‐bis(acetyloxy)‐10‐hydroxy‐16‐oxo‐9,19‐cyclo‐9,10‐secolanosta‐9(11),24‐dien‐26‐yl β‐D ‐glucopyranoside ( 4 ).  相似文献   

4.
Four new furostanol steroid saponins, borivilianosides A–D ( 1 – 4 , resp.), corresponding to (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐hydroxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside ( 1 ), (3β,5α,22R,25R)‐ 26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside ( 2 ), (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 3 ), and (3β,5α,25R)‐26‐(β‐D ‐glucopyranosyloxy)furost‐20(22)‐en‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 4 ), together with the known tribuluside A and (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside were isolated from the dried roots of Chlorophytum borivilianum Sant and Fern . Their structures were elucidated by 2D ‐NMR analyses (COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry.  相似文献   

5.
A Ph3P‐catalyzed cyclization of α‐halogeno ketones 2 with dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates) 3 produced halogenated α,β‐unsaturated γ‐butyrolactone derivatives 4 in good yields (Scheme 1, Table). The presence of electron‐withdrawing groups such as halogen atoms at the α‐position of the ketones was necessary in this reaction. Cyclization of α‐chloro ketones resulted in higher yields than that of the corresponding α‐bromo ketones. Dihalogeno ketones similarly afforded the expected γ‐butyrolactone derivatives in high yields.  相似文献   

6.
Three new monoterpenoid indole alkaloids, vinmajorines C–E ( 1 – 3 ), along with 18 known analogues ( 4 – 21 ), were isolated from the whole plants of Vinca major. The new structures were elucidated as (5α,15β,16R,17α,19β,20α,21β)‐10,17‐dimethoxy‐21‐methyl‐18‐oxa‐5,16‐cycloyohimban‐19‐ol ( 1 ), (5α,15β,16R,17α,20α,21β)‐10‐methoxy‐21‐methyl‐18‐oxa‐5,16‐cycloyohimban‐17‐ol ( 2 ), and (5α,15β,16R,17α,20α,21β)‐10‐methoxy‐21‐methyl‐18‐oxa‐5,16‐cycloyohimban‐17‐yl acetate ( 3 ), respectively, by extensive NMR and MS analysis and comparison with known compounds. Compounds 1 – 3 were evaluated for their cytotoxic activities against five human cancer cell lines, compounds 1 and 3 showing moderate cytotoxic activities.  相似文献   

7.
The direct and enantioselective γ‐alkylation of α‐substituted α,β‐unsaturated aldehydes proceeding under dienamine catalysis is described. We have found that the Seebach modification of the diphenyl‐prolinol silyl ether catalyst in combination with saccharin as an acidic additive promotes an SN1 alkylation pathway, while ensuring complete γ‐site selectivity and a high stereocontrol. Theoretical and spectroscopic investigations have provided insights into the conformational behavior of the covalent dienamine intermediate derived from the condensation of 2‐methylpent‐2‐enal and the chiral amine. Implications for the mechanism of stereoinduction are discussed.  相似文献   

8.
Three new withanolide compounds, named baimantuoluolines D–F, along with three known withanolides and a lignan were isolated from the flower of Datura metel L., the parts effective against psoriasis. The structures of the new compounds were elucidated as (5α,6β,12β,20R,22R,24R,25S)‐21,24‐epoxy‐5,6,12‐trihydroxy‐27‐methoxy‐1‐oxowith‐2‐enolide ( 1 ), (5α,6β,12β,20R,22R,24R,25S)‐21,24‐epoxy‐5,6,12,27‐tetrahydroxy‐1‐oxowith‐2‐enolide ( 2 ), and (5α,6β,12β,22R)‐5,6,12,21‐tetrahydroxy‐1‐oxowith‐24‐enolide( 3 ) on the basis of physicochemical evidence.  相似文献   

9.
A preparatively useful one‐step transformation of γ,γ‐disubstituted α‐formyl‐γ‐lactones into trisubstituted γ,δ‐unsaturated aldehydes is described, by means of catalytic amounts of either AcOH or AcOEt in the vapor phase over a glass support. A mechanistic rationale is proposed.  相似文献   

10.
The 1,3‐dipolar cycloaddition of 4‐chlorobenzonitrile oxide to the unsaturated system of (?)‐(R)‐carvone occurred exclusively at C(8) to give a new isoxazoline derivative. This derivative reacts with NH2OH to yield a new heterocycle, observed for the first time. On the other hand, the addition of 4‐chlorobenzonitrile oxide to the unsaturated lactone (?)‐4aα,7α,7aβ‐nepetalactone gave, in a good yield, also a new heterocycle, again obtained for the first time. The terpenoid (?)‐(R)‐carvone and iridoid (?)‐4aα,7α,7aβ‐nepetalactone were isolated from Moroccan species Mentha viridis (L.) and Nepeta tuberosa (L.), respectively. The new heterocycles obtained were identified by combination of chromatographic and spectroscopic methods.  相似文献   

11.
Three new triterpenoid saponins, xuedanglycosides A–C ( 1 – 3 , resp.), along with six known ones, were isolated from the rhizomes of Hemsleya chinensis. By detailed analysis of the NMR spectra, by chemical methods, and by comparison with spectral data of known compounds, the structures of new compounds were determined to be 16α,23α‐epoxy‐2β,3α,20β‐trihydroxy‐10α,23α‐cucurbita‐5,24‐dien‐11‐on‐2‐yl β‐D ‐glucopyranoside ( 1 ), 2β,3α,16α,20β‐tetrahydroxycucurbita‐5,25‐diene‐11,22‐dion‐2‐yl β‐D ‐glucopyranoside ( 2 ), and oleanolic acid 28‐Oβ‐xylopyranosyl‐(1→6)‐Oβ‐glucopyranoside ( 3 ). In addition, hemslecin A 2‐Oβ‐D ‐glucopyranoside ( 6 ), hemsamabilinin B ( 7 ), and hemslonin A ( 9 ) were obtained for the first time from this plant.  相似文献   

12.
Rhodium fluoroapatite (RhFAP) is an efficient catalyst for conjugate addition of organoboron reagents to α,β‐unsaturated carbonyl compounds. A variety of arylboronic acids and α,β‐unsaturated carbonyl compounds were converted to the corresponding conjugate‐addition products, demonstrating the versatility of the reaction. The reaction is highly selective. RhFAP was recovered quantitatively by simple filtration, and reused for four cycles.  相似文献   

13.
(3α,5α)‐3‐Hydroxy‐C‐homopregnane‐11,20‐dione ( 3 ) was prepared in eleven steps from the commercially available pregn‐4‐ene‐3,11,20‐trione ( 4 ) via the 11‐oxo‐13‐formyl‐12,13‐secopregnane intermediate 11 (Scheme 2). Subjection of this secopregnane to an intramolecular aldol condensation afforded the α,β‐unsaturated key intermediate C‐homopregn‐12‐en‐11‐one 12 .  相似文献   

14.
Two new homo‐aro‐cholestane glycosides and a new cholestane glycoside, along with three known saponins, were isolated from the 95% EtOH extract of the roots and rhizomes of Paris polyphylla var. pseudothibetica. The structures of the new compounds were elucidated as 3βO‐{α‐L ‐rhamnopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl‐(1→4)‐[α‐L ‐rhamnopyranosyl‐(1→2)]}‐β‐D ‐glucopyranosylhomo‐aro‐cholest‐5‐ene‐26‐Oβ‐D ‐glucopyranoside (parispseudoside A, 1 ), 3βOα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosylhomo‐aro‐cholest‐5‐ene‐26‐Oβ‐D ‐glucopyranoside (parispseudoside B, 2 ), and (25R)‐3βO‐{α‐L ‐rhamnopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl‐(1→4)‐[α‐L ‐rhamnopyranosyl‐(1→2)]}‐β‐D ‐glucopyranosyl‐cholesta‐5,17(20)‐diene‐16,22‐dione‐26‐Oβ‐D ‐glucopyranoside (parispseudoside C, 3 ) by spectroscopic methods, including 1D‐ and 2D‐NMR, and MS experiments, as well as chemical evidences.  相似文献   

15.
Three new escin‐like triterpene saponins, assamicins VI ( 1 ), VII ( 2 ), and VIII ( 3 ), were isolated from the seeds of A. assamica, together with a known saponin, isoescin Ib ( 4 ). Their structures were established as 28‐O‐acetyl‐21‐O‐(3,4‐di‐O‐angeloyl‐6‐deoxy‐β‐glucopyranosyl)‐3‐O‐{Oβ‐glucopyranosyl‐(1→2)‐O‐[β‐glucopyranosyl‐(1→4)]‐β‐glucopyranuronosyl}protoaescigenin ( 1 ), 21‐O‐angeloyl‐3‐O‐{Oα‐rhamnopyranosyl‐(1→2)‐O‐[β‐glucopyranosyl‐(1→3)]‐β‐glucopyranuronosyl}protoaescigenin ( 2 ), and 21‐O‐angeloyl‐3‐O‐{O‐[β‐glucopyranosyl‐(1→3)]‐β‐glucopyranuronosyl}protoaescigenin ( 3 ) on the basis of spectroscopic analysis (protoaescigenin=(3β,4β,16α,21β,22α)‐olean‐12‐ene‐3,16,21,22,23,28‐hexol; angelic acid=(2Z)‐2‐methylbut‐2‐enoic acid).  相似文献   

16.
An environmentally friendly and highly efficient procedure for the preparation of 1,4‐dihydropyridines by the reaction between α,β‐unsaturated aldehydes, aromatic amines and β‐keto esters in the presence of silica supported perchloric acid is described.  相似文献   

17.
Mn(III)‐Cl formed by the reaction of Mn(OAc)3 and hydrochloric acid in situ, reacted with α,β‐unsaturated ketones readily to afford α,β‐dichloroketones in good yields under mild conditions. The products are key precursors for synthesis of conjugated alkynones and other organic compounds.  相似文献   

18.
Six new triterpenoid glycosides, gynosaponins I–VI ( 1 – 6 , resp.), together with three known compounds, ginseng Rb1 ( 7 ), gypenoside XLIX ( 8 ), and gylongiposide I ( 9 ), were isolated from the aerial parts of Gynostemma pentaphyllum. Based on ESI‐MS, IR, 1D‐ and 2D‐NMR data (HMQC, HMBC, COSY, and TOCSY), the structures of the new compounds were determined as (3β,12β,20S)‐trihydroxydammar‐24‐ene 20‐O‐[α‐rhamnopyranosyl‐(1→2)]‐β‐glucopyranoside ( 1 ), (3β,12β,20S)‐trihydroxydammar‐24‐ene 20‐O‐[α‐rhamnopyranosyl‐(1→2)] [α‐rhamnopyranosyl‐(1→3)]‐β‐glucopyranoside ( 2 ), (3β,12β,20S)‐trihydroxydammar‐24‐ene 3‐Oβ‐glucopyranosyl‐20‐O‐[α‐rhamnopyranosyl‐(1→2)]‐β‐glucopyranoside ( 3 ), (3β,12β,20S)‐trihydroxydammar‐24‐ene 3‐Oβ‐glucopyranosyl‐20‐O‐[α‐rhamnopyranosyl‐(1→2)] [α‐rhamnopyranosyl‐(1→3)]‐β‐glucopyranoside ( 4 ), (3β,12β,20S)‐trihydroxydammar‐24‐ene 3‐O‐{[β‐glucopyranosyl‐(1→2)]‐β‐glucopyranosyl}‐20‐O‐[α‐rhamnopyranosyl‐(1→2)]‐β‐glucopyranoside ( 5 ), and (3β,12β,20S)‐trihydroxydammar‐24‐ene 3‐O‐{[β‐glucopyranosyl‐(1→2)]‐β‐glucopyranosyl}‐20‐O‐[α‐rhamnopyranosyl‐(1→2)] [α‐rhamnopyranosyl‐(1→3)]‐β‐glucopyranoside ( 6 ).  相似文献   

19.
Nine new sesquiterpenes, i.e., dendronobilins A–I ( 1 – 9 ), with copacamphane‐type ( 1 ), picrotoxane‐type ( 2 – 6 ), muurolene‐type ( 7 ), alloaromadendrane‐type ( 8 ), and cyclocopacamphane‐type ( 9 ) skeletons, were isolated from the 60% EtOH extract of the stems of Dendrobium nobile. Their structures were established as (1R,2R,4S,5S,6S,8S,9R)‐2,8‐dihydroxycopacamphan‐15‐one ( 1 ), (2β,3β,4β,5β)‐2,4,11‐trihydroxypicrotoxano‐3(15)‐lactone ( 2 ), (2β,3β,5β,9α,11β)‐2,11‐epoxy‐9,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 3 ), (2β,3β,5β,12R*)‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 4 ), (2β,3β,5β,12S*)‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 5 ), (2β,3β,5β,9α)‐9,10‐cyclo‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 6 ), (9β,10α)‐muurol‐4‐ene‐9,10,11‐triol ( 7 ), (10α)‐alloaromadendrane‐10,12,14‐triol ( 8 ), and (5β)‐cyclocopacamphane‐5,12,15‐triol ( 9 ) on the basis of spectroscopic analysis. The absolute configuration of compound 1 was tentatively assigned as (1R,2R,4S,5S,6S,8S,9R) according to its CD spectrum and the octant rule. Compounds 1 and 4 – 9 were inactive in our preliminary in vitro immunomodulatory bioassay.  相似文献   

20.
Three new furostanol glycosides, named ciliatasides A, B, and C ( 1 – 3 , resp.), have been isolated from the roots of Digitalis ciliata, along with two known furostanol glycosides. The structures of the new compounds were identified as (2α,3β,5α,14β,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐2‐hydroxyfurost‐20(22)‐en‐3‐yl β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranoside ( 1 ), (2α,3β,5α,14β,22R)‐26‐(β‐D ‐glucopyranosyloxy)‐2‐hydroxy‐22‐methoxyfurost‐25(27)‐en‐3‐yl β‐D ‐galactopyranosyl‐(1→2)‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 2 ), and (2α,3β,5α,14β,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐2,22‐dihydroxyfurostan‐3‐yl β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranoside ( 3 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号