首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four new furostanol steroid saponins, borivilianosides A–D ( 1 – 4 , resp.), corresponding to (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐hydroxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside ( 1 ), (3β,5α,22R,25R)‐ 26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside ( 2 ), (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 3 ), and (3β,5α,25R)‐26‐(β‐D ‐glucopyranosyloxy)furost‐20(22)‐en‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 4 ), together with the known tribuluside A and (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside were isolated from the dried roots of Chlorophytum borivilianum Sant and Fern . Their structures were elucidated by 2D ‐NMR analyses (COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry.  相似文献   

2.
Five new steroidal glycosides were isolated from the roots of Balanites aegyptiaca, a widely used African medicinal plant. On the basis of spectroscopic and chemical evidence, their structures were determined as (3β,12α,14β,16β)‐12‐hydroxycholest‐5‐ene‐3,16‐diyl bis(β‐D ‐glucopyranoside) ( 1 ), (3β,20S,22R,25R)‐ and (3β,20S,22R,25S)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurost‐5‐en‐3‐yl β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→4)[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 2 and 3 , resp.), and (3β,20S,22R,25R)‐ and (3β,20S,22R,25S)‐spirost‐5‐en‐3‐yl β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→4)[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 4 and 5 , resp.)  相似文献   

3.
A new furostanol saponin, sisalasaponin C ( 1 ), and a new spirostanol saponin, sisalasaponin D ( 2 ), were isolated from the fresh leaves of Agave sisalana, along with three other known steroidal saponins and two stilbenes. Their structures were identified as (3β,5α,6α,22α,25R)‐3,26‐bis[(β‐D ‐glucopyrano‐ syl)oxy]‐22‐hydroxyfurostan‐6‐yl β‐D ‐glucopyranoside ( 1 ), (3β,5α,25R)‐12‐oxospirostan‐3‐yl 6‐deoxy‐α‐L ‐mannopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→3)‐[β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→2)]‐β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 2 ), (3β,5α,6α,22α,25R)‐22‐methoxyfurostane‐3,6,26‐triyl tris‐β‐D ‐glucopyranoside, cantalasaponin‐1, polianthoside D, (E)‐ and (Z)‐2,3,4′,5‐tetrahydroxystilbene 2‐O‐β‐D ‐glucopyranosides. The last three known compounds were isolated from the fresh leaves of Agavaceae for the first time. The structures of the new compounds were elucidated by detailed spectroscopic analysis, including 1D‐ and 2D‐NMR experiments, and chemical techniques.  相似文献   

4.
Phytochemical analyses were carried out on the rhizomes of Clintonia udensis (Liliaceae) with particular attention paid to the steroidal glycoside constituents, resulting in the isolation of three new polyhydroxylated spirostanol glycosides, named clintonioside A ( 1 ), B ( 2 ), and C ( 3 ). On the basis of their spectroscopic data, including 2D‐NMR spectroscopy, in combination with acetylation and hydrolytic cleavage, the structures of 1 – 3 were determined to be (1β,3β,23S,24S,25R)‐1,23,24‐trihydroxyspirost‐5‐en‐3‐yl Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 1 ), (1β,3β,23S,24S)‐3,21,23,24‐tetrahydroxyspirosta‐5,25(27)‐dien‐1‐yl Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranoside ( 2 ), and (1β,3β,23S,24S)‐21‐(acetyloxy)‐24‐[(6‐deoxy‐β‐D ‐gulopyranosyl)oxy]‐3,23‐dihydroxyspirosta‐5,25(27)‐dien‐1‐yl Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranoside ( 3 ).  相似文献   

5.
Three new triterpenoid saponins, ardisicrenoside I ( 1 ), ardisicrenoside J ( 2 ), and ardisicrenoside M ( 3 ), along with eight known compounds, were isolated from the roots of Ardisia crenata Sims . Their structures were elucidated as 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 1 ), 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 2 ), 30,30‐dimethoxy‐16‐oxo‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 3 ), ardisiacrispin A ( 4 ), ardisiacrispin B ( 5 ), ardisicrenoside B ( 6 ), ardisicrenoside A ( 7 ), ardisicrenoside H ( 8 ), ardisicrenoside G ( 9 ), cyclamiretin A‐3βOβ‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 10 ), and cyclamiretin A‐3βOα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 11 ) by means of chemical and spectral analysis, and their cytotoxicities were evaluated in vitro.  相似文献   

6.
Two new monodesmosidic cycloartane triterpene glycosides, depressosides E and F, and two new flavonol glycosides, depressonol A and B, were isolated from the butanol‐soluble part of the EtOH extract of Corchorus depressus L . The structures of the new compounds were elucidated as (22R,24S)‐22,25‐epoxy‐9,19‐cyclolanostane‐3β,16β,24‐triol 3‐[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranoside] ( 1 ), (22R,24S)‐22,25‐epoxy‐9,19‐cyclolanostane‐3β,16β,24‐triol 3‐[α‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranoside] ( 2 ), kaempferol 3‐[β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside] 7‐[α‐L ‐arabinofuranoside] ( 4 ), and kaempferol 3‐[β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐galactopyranoside] 7‐[α‐L ‐arabinofuranoside] ( 5 ) on the basis of chemical evidence and detailed spectroscopic studies.  相似文献   

7.
Two new spirostanol saponins, namely elephanosides G and H ( 1 and 2 , resp.) were isolated from the leaves of Yucca elephantipes (Agavaceae), together with the two known furostanol saponins 3 and 4 and the six known flavonoid O‐ and C‐glycosides 5 – 10 . The new structures were elucidated as (3β,25S)‐spirost‐5‐en‐3‐yl Oβ‐D ‐glucopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 1 ) and (3β,5β,25R)‐3‐[(2‐Oβ‐D ‐glucopyranosyl‐β‐D ‐galactopyranosyl)oxy]spirostan‐12‐one ( 2 ) on the basis of detailed spectroscopic analysis and acidic hydrolysis.  相似文献   

8.
A further phytochemical investigation on the whole plants of Ypsilandra thibetica yielded three new spirostane glycosides, named ypsilandrosides M–O ( 1 – 3 ). Their structures were established as (3β,11α,25R)‐3,11‐dihydroxyspirost‐5‐en‐12‐one 3‐{O‐α‐L ‐rhanmopyranosyl‐(1→4)‐O‐L ‐rhanmopyranosyl‐(1→4)‐O‐[α‐L ‐rhanmopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside} ( 1 ), (3β,7β,25R)‐spirost‐5‐ene‐3,7‐diol 3‐{O‐α‐L ‐rhanmopyranosyl‐(1→4)‐Oα‐L ‐rhanmopyranosyl‐(1→4)‐O‐[α‐L ‐rhanmopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside} ( 2 ), and (3β,7α,25R)‐spirost‐5‐ene‐3,7,17‐triol 3‐{O‐α‐L ‐rhanmopyranosyl‐(1→4)‐Oα‐L ‐rhanmopyranosyl‐(1→4)‐O‐[α‐L ‐rhanmopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside} ( 3 ) by means of a combination of MS, 1D‐ and 2D‐NMR spectroscopic methods, and chemical degradation. Among them, compound 3 is the first pennogenin (=(3β,25R)‐spirost‐5‐ene‐3,17‐diol) saponin whose aglycone contains an OH group at C(7). Compounds 1 – 3 were evaluated for the inhibition of the growth of five tumor cell lines, but all of them proved to be inactive.  相似文献   

9.
Two novel echinocystic acid (=(3β,16α)‐3,16‐dihydroxyolean‐12‐en‐28‐oic acid) glycosides, foetidissimosides C ( 1 ), and D ( 2 ), along with new cucurbitane glycosides, i.e., foetidissimosides E/F ( 3 / 4 ) as an 1 : 1 mixture of the (24R)/(24S) epimers, were obtained from the roots of Cucurbita foetidissima. Their structures were elucidated by means of a combination of homo‐ and heteronuclear 2D‐NMR techniques (COSY, TOCSY, NOESY, ROESY, HSQC, and HMBC), and by FAB‐MS. The new compounds were characterized as (3β,16α)‐28‐{[Oβ‐D ‐glucopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐6‐deoxy‐α‐L ‐mannopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl]oxy}‐16‐hydroxy‐28‐oxoolean ‐12‐en‐3‐yl β‐D ‐glucopyranosiduronic acid ( 1 ), (3β,16α)‐16‐hydroxy‐28‐oxo‐28‐{{Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐xylopyranosyl‐(1→4)]‐O‐6‐deoxy‐α‐L ‐mannopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl}oxy}olean‐12‐en‐3‐yl β‐D ‐glucopyranosiduronic acid ( 2 ), and (3β,9β,10α,11α,24R)‐ and (3β,9β,10α,11α,24S)‐25‐(β‐D ‐glucopyranosyloxy)‐9‐methyl‐19‐norlanost‐5‐en‐3‐yl 2‐Oβ‐D ‐glucopyranosyl‐β‐D ‐glucopyranoside ( 3 and 4 , resp.).  相似文献   

10.
Four new saponins, yemuosides YM17–YM20 ( 1 – 4 , resp.), were isolated from the rattan of Stauntonia chinensis DC. (Lardizabalaceae) along with a known saponin, nipponoside D ( 5 ). Their structures were elucidated by spectroscopic analysis and chemical evidence as 20,30‐dihydroxy‐29‐noroleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 1 ), 20,29‐dihydroxy‐30‐noroleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 2 ), 29‐hydroxy‐30‐norolean‐20(21)‐enolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 3 ), 29‐hydroxyoleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 4 ), and 23,29‐dihydroxyoleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 5 ). Yemuoside YM17–YM19 ( 1 – 3 , resp.) contain novel unusual nortriterpene aglycones.  相似文献   

11.
Four new steroidal saponins, named disporosides A–D ( 1 – 4 ), corresponding to (3β,25R)‐3‐[(β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐glucopyranosyl)oxy]‐5β‐spirostan ( 1 ), (3β,25R)‐3‐[(β‐D ‐glucopyranosyl‐(1→2)‐[6‐O‐hexadecanoyl‐β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐glucopyranosyl)oxy]‐5β‐spirostan ( 2 ), (3β,22R,25R)‐26‐[(β‐D ‐glucopyranosyl)oxy]‐3‐[(β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl)oxy]‐5β‐furostan ( 3 ), and (3β,22R,25R)‐26‐[(β‐D ‐glucopyranosyl)oxy]‐3‐[(β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐glucopyranosyl)oxy]‐5β‐furostan ( 4 ), have been isolated from the fresh rhizomes of Disporopsis pernyi, together with the three known compounds Ys‐I, agavoside B, and (3β,25R)‐3‐[(β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranosyl)oxy]‐5α‐spirostan‐12‐one. Their structures were elucidated by spectroscopic analyses, chemical transformations (acid hydrolysis), and comparison with literature data.  相似文献   

12.
Six new triterpenoid glycosides, gynosaponins I–VI ( 1 – 6 , resp.), together with three known compounds, ginseng Rb1 ( 7 ), gypenoside XLIX ( 8 ), and gylongiposide I ( 9 ), were isolated from the aerial parts of Gynostemma pentaphyllum. Based on ESI‐MS, IR, 1D‐ and 2D‐NMR data (HMQC, HMBC, COSY, and TOCSY), the structures of the new compounds were determined as (3β,12β,20S)‐trihydroxydammar‐24‐ene 20‐O‐[α‐rhamnopyranosyl‐(1→2)]‐β‐glucopyranoside ( 1 ), (3β,12β,20S)‐trihydroxydammar‐24‐ene 20‐O‐[α‐rhamnopyranosyl‐(1→2)] [α‐rhamnopyranosyl‐(1→3)]‐β‐glucopyranoside ( 2 ), (3β,12β,20S)‐trihydroxydammar‐24‐ene 3‐Oβ‐glucopyranosyl‐20‐O‐[α‐rhamnopyranosyl‐(1→2)]‐β‐glucopyranoside ( 3 ), (3β,12β,20S)‐trihydroxydammar‐24‐ene 3‐Oβ‐glucopyranosyl‐20‐O‐[α‐rhamnopyranosyl‐(1→2)] [α‐rhamnopyranosyl‐(1→3)]‐β‐glucopyranoside ( 4 ), (3β,12β,20S)‐trihydroxydammar‐24‐ene 3‐O‐{[β‐glucopyranosyl‐(1→2)]‐β‐glucopyranosyl}‐20‐O‐[α‐rhamnopyranosyl‐(1→2)]‐β‐glucopyranoside ( 5 ), and (3β,12β,20S)‐trihydroxydammar‐24‐ene 3‐O‐{[β‐glucopyranosyl‐(1→2)]‐β‐glucopyranosyl}‐20‐O‐[α‐rhamnopyranosyl‐(1→2)] [α‐rhamnopyranosyl‐(1→3)]‐β‐glucopyranoside ( 6 ).  相似文献   

13.
Three new medicagenic acid saponins, micranthosides A–C ( 1 – 3 ), were isolated from the roots of Polygala micrantha Guill . & Perr ., along with six known presenegenin saponins. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR experiments (1H, 13C, DEPT, COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry as 3‐Oβ‐D ‐glucopyranosylmedicagenic acid 28‐[Oβ‐D ‐galactopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl] ester ( 1 ), 3‐Oβ‐D ‐glucopyranosylmedicagenic acid 28‐[O‐6‐O‐acetyl‐β‐D ‐galactopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl] ester ( 2 ), and 3‐O‐{Oβ‐D ‐glucopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐glucopyranosyl}medicagenic acid 28‐{Oβ‐D ‐apiofuranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl} ester ( 3 ). Compounds 1 – 3 were evaluated against HCT 116 and HT‐29 human colon cancer cells, but they did not show any cytotoxicity.  相似文献   

14.
Two new homo‐aro‐cholestane glycosides and a new cholestane glycoside, along with three known saponins, were isolated from the 95% EtOH extract of the roots and rhizomes of Paris polyphylla var. pseudothibetica. The structures of the new compounds were elucidated as 3βO‐{α‐L ‐rhamnopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl‐(1→4)‐[α‐L ‐rhamnopyranosyl‐(1→2)]}‐β‐D ‐glucopyranosylhomo‐aro‐cholest‐5‐ene‐26‐Oβ‐D ‐glucopyranoside (parispseudoside A, 1 ), 3βOα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosylhomo‐aro‐cholest‐5‐ene‐26‐Oβ‐D ‐glucopyranoside (parispseudoside B, 2 ), and (25R)‐3βO‐{α‐L ‐rhamnopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl‐(1→4)‐[α‐L ‐rhamnopyranosyl‐(1→2)]}‐β‐D ‐glucopyranosyl‐cholesta‐5,17(20)‐diene‐16,22‐dione‐26‐Oβ‐D ‐glucopyranoside (parispseudoside C, 3 ) by spectroscopic methods, including 1D‐ and 2D‐NMR, and MS experiments, as well as chemical evidences.  相似文献   

15.
Three new phenylethanoid glycosides, named digicilisides A – C ( 1  –  3 , resp.), have been isolated from the roots of Digitalis ciliata, along with five known phenylethanoid glycosides. The structures of 1  –  3 were identified as 2‐(4‐hydroxy‐3‐methoxyphenyl)ethyl β‐d ‐glucopyranosyl‐(1→3)‐[α‐l ‐rhamnopyranosyl‐(1→6)]‐4‐O‐[(E)‐feruloyl]‐β‐d ‐glucopyranoside ( 1 ), 2‐(3,4‐dihydroxyphenyl)ethyl α‐l ‐arabinopyranosyl‐(1→2)‐[β‐d ‐glucopyranosyl‐(1→3)]‐[α‐l ‐rhamnopyranosyl‐(1→6)]‐4‐O‐[(E)‐feruloyl]‐β‐d ‐glucopyranoside ( 2 ), and 2‐(3,4‐dihydroxyphenyl)ethyl β‐d ‐glucopyranosyl‐(1→3)‐{6‐O‐[(E)‐feruloyl]‐β‐d ‐glucopyranosyl‐(1→6)}‐4‐O‐[(E)‐caffeoyl]‐β‐d ‐glucopyranoside ( 3 ).  相似文献   

16.
The isolation and structure elucidation of two new oleanane‐type triterpene glycosides, 29‐(β‐D ‐glucopyranosyloxy)‐2α,3β,23‐trihydroxyolean‐12‐en‐28‐oic acid (=(2α,3β,4α,29α)‐29‐(β‐D ‐glucopyranosyloxy)‐2,3,23‐trihydroxyolean‐12‐en‐28‐oic acid; 1 ) and its C(20)‐epimer, 30‐(β‐D ‐glucopyranosyloxy)‐2α,3β,23‐trihydroxyolean‐12‐en‐28‐oic acid (=(2α,3β,4α,29β)‐29‐β‐D ‐glucopyranosyloxy)‐2,3,23‐trihydroxyolean‐12‐en‐28‐oic acid; 2 ), and a novel nortriterpene glycoside, (17S)‐2α,18β,23‐trihydroxy‐3,19‐dioxo‐19(18→17)‐ abeo‐28‐norolean‐12‐en‐25‐oic acid β‐D ‐glucopyranosyl ester (=(1R,2S,4aS,4bR,6aR,7R,9R,10aS,10bS)‐3,4,4a,4b,5,6,6a,7,8,9,10,10a,10b,11‐tetradecahydro‐1‐hydroxy‐7‐(hydroxymethyl)‐3′,4′,4a,4b,7‐pentamethyl‐2′,8‐ dioxospiro[chrysene‐2(1H),1′‐cyclopentane]‐10a‐carboxylic acid β‐D ‐glucopyranosyl ester; 3 ) from Phlomis viscosa (Lamiaceae) are reported. The structures of the compounds were asigned by means of spectroscopic (IR, 1D‐ and 2D‐NMR, and LC‐ESI‐MS) and chemical (acetylation) methods.  相似文献   

17.
Two novel noroleanane saponins, tubeimoside A ( 1 ) and tubeimoside B ( 2 ), and a new dammarane triterpene saponin, tubeimoside C ( 3 ), together with two known compounds, 4 and 5 , were isolated from the bulbs of Bolbostemma paniculatum (Maxim .) Franquet . Compound 4 was found in this genus for the first time. Based on spectroscopic methods, including IR, NMR (DEPT, COSY, HMQC, HMBC, and TOCSY), and MS experiments, and chemical reactions, the structures of the new compounds were elucidated as 3β‐[β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyloxy]‐2β,23‐dihydroxy‐28‐norolean‐12‐en‐16‐one ( 1 ), 3β‐[β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyloxy]‐2β,23‐dihydroxy‐28‐norolean‐12‐en‐22‐one ( 2 ), (3β,7β)‐7,18,20‐trihydroxydammar‐24‐en‐3‐yl 2‐Oα‐L ‐arabinopyranosyl‐β‐D ‐glucopyranoside ( 3 ).  相似文献   

18.
Four new tirucallane triterpenoid saponins, named munronosides I–IV ( 2 – 5 ), along with three known triterpenoids, sapelin B ( 1 ), melianodiol, and (3β)‐22,23‐epoxytirucall‐7‐ene‐3,24,25‐triol, were isolated from the EtOH extract of the whole plants of Munronia delavayi Franch by chromatographic methods. On the basis of spectroscopic evidences, the structures of 2 – 5 were elucidated as (20S,23R,24S)‐21,25‐epoxy‐29‐{{Oβ‐d‐ glucopyranosyl‐(1→3)‐O‐[α‐l‐ rhamnopyranosyl‐(1→6)]‐β‐d‐ glucopyranosyl}oxy}‐23,24‐dihydroxytirucall‐7‐ene‐3,21‐dione ( 2 ), (3β,20S,23R,24S)‐21,25‐epoxy‐29‐{{Oβ‐d‐ glucopyranosyl‐(1→3)‐O‐[α‐l‐ rhamnopyranosyl‐(1→6)]‐β‐d‐ glucopyranosyl}oxy}‐3,23,24‐trihydroxytirucall‐7‐en‐21‐one ( 3 ), (20S,23R,24S)‐24‐(acetyloxy)‐21,25‐epoxy‐29‐{{Oβ‐d‐ glucopyranosyl‐(1→3)‐O‐[α‐l‐ rhamnopyranosyl‐(1→6)]‐β‐d‐ glucopyranosyl}oxy}‐23‐hydroxytirucall‐7‐ene‐3,21‐dione ( 4 ), and (3β,20S,23R,24S)‐24‐(acetyloxy)‐21,25‐epoxy‐29‐{{Oβ‐d‐ glucopyranosyl‐(1→3)‐O‐[α‐l‐ rhamnopyranosyl‐(1→6)]‐β‐d‐ glucopyranosyl}oxy}‐3,23‐dihydroxytirucall‐7‐en‐21‐one ( 5 ).  相似文献   

19.
From the roots of three species of Acanthophyllum (Caryophyllaceae), two new gypsogenic acid glycosides, 1 and 2, were isolated, 1 from A. sordidum and A. lilacinum, 2 from A. elatius and A. lilacinum, together with three known saponins, glandulosides B and C, and SAPO50. The structures of 1 and 2 were established mainly by 2D NMR techniques as 23‐O‐β‐D ‐galactopyranosylgypsogenic acid‐28‐O‐β‐D ‐glucopyranosyl‐(1→3)‐[β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐galactopyranoside (1) and gypsogenic acid‐28‐O‐β‐D ‐glucopyranosyl‐(1→3)‐[β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐galactopyranoside (2). The cytotoxicity of several of these saponins was evaluated against two human colon cancer cell lines (HT‐29 and HCT 116). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Two new oleanolic acid‐type triterpenoid saponins, raddeanosides R22 and R23 ( 1 and 2 , resp.), together with four known saponins were isolated from the rhizome of Anemone raddeana Regel. The structures of the new compounds were elucidated as oleanolic acid 3‐Oβ‐D ‐glucopyranosyl(1→2)[β‐D ‐glucopyranosyl(1→4)]‐α‐L ‐arabinopyranoside ( 1 ) and oleanolic acid 3‐Oα‐L ‐arabinopyranosyl(1→3)‐α‐L ‐rhamnopyranosyl(1→2)[β‐D ‐glucopyranosyl(1→4)]‐α‐L ‐arabinopyranoside ( 2 ). The four known compounds were identified as oleanolic acid 3‐Oα‐L ‐arabinopyranoside ( 3 ), oleanolic acid 3‐Oβ‐D ‐glucopyranosyl(1→4)‐α‐L ‐arabinopyranoside ( 4 ), hederasaponin B ( 5 ), and hederacholchiside E ( 6 ) on the basis of chemical and spectral evidences. Compound 4 is reported for the first time from the Anemone genus, while the other three known compounds have been already found in this plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号