首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
研究了高密度聚乙烯(HDPE)/超高分子量聚乙烯(UHMWPE)、线性低密度聚乙烯(LLDPE)/UHMWPE、低密度聚乙烯(LDPE)/UHMWPE三种共混物的动态流变性能。从弹性模量、复数粘度、特征频率和松弛时间的对数线性加和性、Cole-Cole曲线、Han曲线以及时温等效原理的分析表明LDPE/UHMWPE共混物在熔体状态是相容的,而LLDPE/UHMWPE和HDPE/UHMWPE共混物在熔体状态下发生分相过程。  相似文献   

2.
国外聚乙烯催化工艺研究进展   总被引:1,自引:0,他引:1  
聚乙烯(PE)以其性优、价廉的优势,成为通用合成树脂中产量最大的品种,主要包括低密度聚乙烯(LDPE)、线性低密度聚乙烯(LLDPE)、高密度聚乙烯(HDPE)、中密度聚乙烯(MDPE)、以及一些具有特殊性能的专用料树脂。催化剂是聚烯烃工业的核心,通过调控活性中心和改善聚合工艺,提高了催化剂活性,完善了所得聚烯烃的性能,推动了聚乙烯工业的蓬勃发展。研发特殊性能或优异性能聚烯烃树脂的催化剂,是目前聚烯烃领域关注的焦点。本文对近年来国外聚乙烯催化剂的研究进展进行了综述,重点阐述了目前研究开发中的催化工艺,涵盖了Ziegler-Natta催化剂、铬催化剂、茂金属催化剂、过渡金属催化剂以及制备双峰或宽峰分布聚烯烃的复合催化剂等;对各类新型催化剂的制备方法和工艺特点进行了总结,同时指明了相关工艺的研发公司,以便国内相关研究部门借鉴。  相似文献   

3.
The effect of time-temperature treatment on morphology of polyethylene-polypropylene (PE-PP) blends wasstudied to establish a relationship between thermal history, morphology and mechanical properties. Polypropylene (PP)homopolymers were used to blend with various polyethylenes (PE), including high density polyethylene (HDPE), lowdensity polyethylene (LDPE), linear low density polyethylene (LLDPE), and very and ultra low density polyethylene(VLDPE and ULDPE). The majority of the blends were prepared at a ratio of PE:PP = 80:20, while blends of PP and LLDPEwere prepared at various compositions. Thermal treatment was carried out at temperatures between the crystallizationtemperatures of PP and PEs to allow PP to crystallize first from the blends. On cooling further, PE crystallized too. A verydiffuse PP spherulite morphology in the PE matrix was formed in some partially miscible blends when PP was less than 20%by mass. Droplet-matrix structures were developed in other blends with either PP or PE as dispersed domains in a continuousmatrix, depending on the composition ratio. The scanning electron microscopy (SEM) images displayed a fibrillar structureof PP spherulite in the LLDPE-PP (80:20) and large droplets of PP in the HDPE-PP (80:20) blend, providing larger surfacearea and better bonding in the LLDPE-PP (80:20) blends. This explains why the blends with diffuse spherulite morphologyshowed greater improvement in tensile properties than droplet-matrix morphology blends after time-temperature treatment.  相似文献   

4.
密度对聚乙烯光氧老化特性的影响研究   总被引:1,自引:0,他引:1  
利用力学试验、凝胶渗透色谱(GPC)、热重分析法(TG)、差示扫描量热法(DSC)、衰减全反射红外光谱技术(ATR-FTIR)、扫描电子显微镜(SEM)比较研究了不同密度聚乙烯(HDPE、LDPE、LLDPE和MDPE)的光氧老化特性,分析了密度对聚乙烯力学性能、分子量、热稳定性、熔融特性、化学结构和表面微观形貌的影响规律。结果表明LDPE弯曲性能、热分解特征温度和氧化诱导温度下降最明显,且区别主要集中在老化初期。老化24d后,HDPE和LDPE冲击强度均已降低。老化64d后,4种PE相对分子质量均下降,其中LDPE相对重均分子质量下降更强烈。LDPE和LLDPE不饱和度增长最快,四种样品支化度变化无明显区别,LDPE的分子链断链作用和氧化作用最为强烈,羰基指数和羟基指数增长最快,表面破坏更严重,由于支链的存在破坏了聚乙烯分子链的规整性,导致LDPE更容易发生老化。  相似文献   

5.
采用苯乙烯(St)单体对具有不同分子形态的聚乙烯(PE)进行了扩散聚合行为研究.结果表明,与高密度聚乙烯(HDPE)和线性低密度聚乙烯(LLDPE)相比,由于低密度聚乙烯(LDPE)中长支链的存在导致其结晶度最低,因此LDPE能够为St单体扩散提供更多的自由体积,故St单体的扩散速率最快,聚苯乙烯(PS)扩散饱和值最高.PS在不同种类的PE颗粒中均呈现为"M"型分布,且在不同PE颗粒中PS纳米微球粒径基本相同.部分扩散到PE颗粒内部的St会对PE接枝形成PE-g-PS,这种接枝物在相界面处可作为相容剂减小分散相的尺寸,增加分散相和基体间的界面黏合力,同时可使材料的拉伸强度和杨氏模量得到明显提高.  相似文献   

6.
利用酸性蓝BGA染料敏化的纳米TiO2作为光催化剂, 与低密度聚乙烯(LDPE)树脂复合制备了具有可见光催化降解性能的复合塑料薄膜. 采用SEM、FTIR、VHX-100数码显微镜和高温凝胶渗透色谱(HTGPC)等分析技术系统地研究了该塑料薄膜在紫外光和太阳光照射下的降解性能. 探讨了塑料薄膜在光辐照前后的力学性能、质量和分子量变化规律. 研究结果表明, 该薄膜在经紫外线照射5 d后质量损失达到17.6%, 数均分子量由21800降低为5900; 经太阳光照射48 d后质量损失达到12.5%, 分子量降为8100. 辐照后薄膜拉伸强度和断裂伸长率显著降低, 羰基含量升高.  相似文献   

7.
正多层复合薄膜是近几年发展最快的一种包装材料。因为单一品种的薄膜已不能满足有效保护商品和美化商品的要求。而复合薄膜则能取长补短,成为性能优良的包装材料。现在复合薄膜的品种已达数百种,复合层数也由开始的二层发展到十多层,分析鉴定此类复合材料的组分,对其特性研究及生产控制具有重要作用,此外,也可为海关进行商品归类提供技术判定手段。鉴定多层复合膜材料的每层成分,通常,需将其逐一分离,再进行红外光谱鉴定,但  相似文献   

8.
LLDPE/IPP共混物高取向薄膜的附生结晶   总被引:1,自引:0,他引:1  
本文用透射电子显微术、电子衍射等方法研究了线性低密度聚乙烯(LLDPE)和等规聚丙烯(IPP)共混物高取向薄膜的形态结构.在熔体拉伸薄膜中统组分的LLDPE与IPP均以高取向的片晶形式存在,片晶生长方向垂直手拉伸方向.当共混物中LLDPE含量较低(小于40%)时,作为分散相的LLDPE在IPP上附生结晶.两种片晶的c轴成45°交角,附生结晶的接触面为LLDPE的(100)和IPP的(010).而在LLDPE含量大于50%时,LLDPE形成独立的相区,则不存在附生结晶现象,结果两种片晶的生长方向均垂直于拉伸方向.在135℃热处理15min,然后自然冷却的LLDPE/IPP共混物薄膜中,当LLDPE含量≤50%时,LLDPE仍然在IPP上附生生长,二者的结构关系与热处理前的相同.  相似文献   

9.
采用紫外光引发接枝表面改性的方法,以芴酮(FL)为引发剂,在低密度聚乙烯(LDPE)薄膜表面上接枝丙烯酸(AA)、甲基丙烯酸(MAA)、丙烯酸甲酯(MA)、甲基丙烯酸甲酯(MMA)、丙烯酰胺(AM)等单体,以赋予薄膜表面新的化学性质.考察了引发剂浓度、紫外光的辐照时间、辐照强度、单体种类对LDPE薄膜接枝程度的影响.结果表明,在一定范围内,增加芴酮浓度,可以提高单体的接枝率,但当芴酮浓度达到5%时,接枝率反而下降.延长辐照时间至4 min和提高紫外光的辐照强度达100 W/m2,均有利于接枝反应的进行.不同单体在LDPE膜上的接枝能力与单体的活性、单体与基材的相容性等因素有关.接枝后,LDPE与水的接触角下降程度不仅与单体在膜上的接枝量有关,还与接枝单体的亲水性能密切相关.  相似文献   

10.
选择了2种密度和分子量相近但共聚单体分别为1-丁烯和1-辛烯的线性低密度聚乙烯(LLDPE)为原料制膜,通过Elmendorf撕裂、直角撕裂、广角X光衍射(WAXS)及小角X光散射(SAXS)研究了薄膜的撕裂性能和结构的关系.实验表明我国现行通用的直角撕裂法表征撕裂的结果与国际通用的Elmendorf撕裂发现得到的结果相差很大。Elmendrof撕裂的形变速度接近薄膜的实际破裂速度,比直角撕裂的形变速度快很多。实验结果表明薄膜在低速和高速形变下(如500 min~(-1))的结构响应显著不同,这一差别应该是导致此二撕裂方法表征差异的原因。LLDPE薄膜的撕裂性能在很大程度上,但并非完全由其聚集态的结构来决定,反映晶体间连接强度的系带分子(tie chain)密度也是一个重要因素.共聚单体为辛烯的薄膜和共聚单体为丁烯的薄膜相比不仅撕裂强度要大很多,在相同取向的情况下,其撕裂强度的降低也小很多.  相似文献   

11.
LLDPE/LDPE共混体系的相容性与性能   总被引:3,自引:0,他引:3  
杨毓华  李喜 《应用化学》1996,13(5):88-90
LLDPE/LDPE共混体系的相容性与性能杨毓华,花荣,白春霞,于旻李三喜,葛铁军(中国科学院长春应用化学研究所长春130022)(沈阳化工学院高分子系沈阳)关键词DSC,WAXD,力学性能,LLDPE,LDPE,共混,相容性非晶-非晶-结晶共混体系...  相似文献   

12.
ABSTRACT

The role of di-cumyl peroxide (DCP) as compatibilizer in low density Polyethylene/Polypropylene (LDPE/PP) blends has been explored. Mixtures with varying LDPE/PP ratio were prepared in a Brabender plasticorder and tested for their mechanical properties and calorimetric response. Then peroxide was added at concentrations up to 0.5%, and the mechanical properties of the these new blends were measured. Also, the mixing torque, melt flow index and gel content of the above products were recorded as a function of peroxide concentration. It was found that the incorporation of DCP restricts the thermoplastic characteristics of the melt, which was primarily attributed to branching which occurs in LDPE. This results in an enhancement in the adhesive bonding between the two polymers mainly due to chain entanglements. This was further supported by the fact that mechanical properties of the treated blend were significantly improved.  相似文献   

13.
1. The structure and feature ofm-LLDPE Due to having a kind of active site in metallocene catalyst, the rate of polymerization and insertion of comonomer are very uniform. Compared with conventional LLDPE, the structure of m-LLDPE has such features: (1) a narrow molecular weight distribution, about 2.0-2.5. The conventional LLDPE, however, has a wide molecular weight distribution, about 4.0-8.0, (2) the distribution of comonomer between different m-LLDPE molecular chain is very uniform, (3) the distribution of comonomer intermolecular-chain is very uniform.  相似文献   

14.
The heat capacity of a very low-density polyethylene copolymer (VLDPE) was measured between 10 and 410 K. Using two sets of literature data for the fully crystalline and the fully amorphous states, crystallinities were calculated as a function of temperature. During the stabilisation periods in the melting process no equilibrium is reached, because of an exothermic process, which is attributed to (re)crystallization. Values for the enthalpy of melting and for the heat capacity of the liquid are given. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
低密度聚乙烯光交联点的结构及其形成机理   总被引:2,自引:0,他引:2  
用溶液高分辨核磁共振和荧光光谱等方法研究了由光引发剂二苯甲酮(BP)引发低密度聚乙烯(LDPE)和模型化合物交联点的结构、BP的光解产物及其形成机理.首次观测和鉴定了光交联LDPE(XLPE)中的H型和Y型长链支化交联点;据估计在熔融态紫外光照5~1O的XLPE样品中H型和Y型文联点的产率分别为5.7~16.9和7.6~21.6个结构单元.确定了BP在光引发过程中光解的主要产物为苯并哪醇,并探讨了存在少量α,α'一二本基烷醇的可能性.  相似文献   

16.
光降解性聚乙烯薄膜降解过程的表征   总被引:2,自引:0,他引:2  
用全反射傅里叶红外光谱、X射线光电子能谱和示差扫描量热仪研究了含光敏剂的低密度聚乙烯薄膜在光降解过程中降解速率的变化规律,结果表明,光降解性聚乙烯薄膜在降解过程初期,降解速率很小,光敏剂显示抗氧化剂性能;降解24h后,降解速率迅速增加,直至薄膜破坏,光敏剂显示光引发剂性能。作为对比,同时研究了光敏剂和其它两种添加剂对聚乙薄膜光解速率的协同效应和两种添加剂体系显示的性能。  相似文献   

17.
线性低密度聚乙烯合成研究进展   总被引:2,自引:0,他引:2  
共单体效应;原位共聚;后过渡金属催化剂;综述  相似文献   

18.
线性低密度聚乙烯的结构、形态与热行为研究进展   总被引:8,自引:1,他引:7  
介绍了近年来包括藏金属LLDPE在内的线性低密度聚乙烯的结构、形态、结晶、熔融和物理性质等方面研究工作的最新进展。  相似文献   

19.
选用4种商品化的具有不同熔体流动速率的低密度聚乙烯(LDPE),利用高温凝胶渗透色谱仪(HT-GPC)、碳核磁共振谱仪(13C NMR)、差示扫描量热仪(DSC)和流变仪研究其链结构特点及其流变性能。 按照相对分子质量的差异分成两组,D-1和Q-1,D-3和Y-1,每组的两个样品具有相近的平均相对分子质量。 13C NMR的结果表明,4种LDPE都既含有短链支化又含有长链支化,且短链支化含量均高于长链支化含量;而短链支化中丁基含量最多。 连续自成核退火热分级(SSA)结果表明,树脂中均含有不同长度的可结晶的亚甲基序列,即每种树脂分子链内的短链支化分布不均匀。 探讨了相对分子质量及其分布、亚甲基序列长度及其分布、支化含量、结晶度等因素对树脂熔融行为、流变行为和薄膜力学性能的影响,发现Q-1的低相对分子质量尾端和Y-1的长链支化含量均影响熔体流动速率,平均亚甲基序列长度决定熔融峰的位置,结晶度直接影响薄膜的力学性能。 基于上述结果,建立结构与性能的关联。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号