首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
TiO2?x with well‐controlled hollow multi‐shelled structures (HoMSs) were designed and synthesized, via a sequential templating approach (STA), to act as sulfur carrier materials. They were explored as physico‐chemical encapsulation materials. Particularly, the sulfur cathode based on triple‐shelled TiO2?x HoMSs delivered a specific capacity of 903 mAh g?1 with a capacity retention of 79 % at 0.5 C and a Coulombic efficiency of 97.5 % over 1000 cycles. The outstanding electrochemical performance is attributed to better spatial confinement and integrated conductivity of the intact triple‐shell that combine the features of physico‐chemical adsorption, short charge transfer path along with mechanical strength.  相似文献   

2.
Herein, we present heterogeneous hollow multi‐shelled structures (HoMSs) prepared by exploiting the properties of the metal–organic framework (MOFs) casing. Through accurately controlling the transformation of MOF layer into different heterogeneous casings, we can precisely design HoMSs of SnO2@Fe2O3(MOF) and SnO2@FeOx‐C(MOF), which not only retain properties of the original SnO2‐HoMSs, but also structural information from the MOFs. Tested as anode materials in LIBs, SnO2@Fe2O3 (MOF)‐HoMSs demonstrate superior lithium‐storage capacity and cycling stability to the original SnO2‐HoMSs, which can be attributed to the topological features from the MOF casing. Making a sharp contrast to the electrodes of SnO2@Fe2O3 (particle)‐HoMSs fabricated by hydrothermal method, the capacity retention after 100 cycles for the SnO2@Fe2O3 (MOF)‐HoMSs is about eight times higher than that of the SnO2@Fe2O3 (particle)‐HoMS.  相似文献   

3.
Herein, multifunctional N‐doped carbon nanodots (NCNDs) were prepared through the one‐step hydrothermal treatment of yeast. Results show that the NCNDs can be used as a new photocatalyst to drive the water‐splitting reaction under UV light. Moreover, the NCNDs can efficiently catalyze the hydrogen evolution reaction. Under visible‐light irradiation, Eosin Y‐sensitized NCNDs exhibit excellent activity for hydrogen evolution. The hydrogen evolution rate of NCNDs (without any modification and co‐catalyst) reaches 107.1 μmol h?1 (2142 μmol g?1 h?1). When Pt is loaded on the NCNDs, the hydrogen evolution rate reaches 491.2 μmol h?1 (9824 μmol g?1 h?1) under visible‐light irradiation. In addition, the NCNDs show excellent fluorescent properties and can be applied as a fluorescent probe for the sensitive and selective detection of Fe3+.  相似文献   

4.
The need for renewable energy focuses attention on hydrogen obtained by using sustainable and green methods. The sustainable compound glycerol can be used for hydrogen production by heterogeneous photocatalysis. A novel approach involves the promotion of the TiO2 photocatalyst with a binary combination of nitrogen and transition metal. We report the synthesis and spectroscopic characterization of the new N‐M‐TiO2 photocatalysts (M=none, Cr, Co, Ni, Cu), and the photocatalytic reforming of glycerol to hydrogen under ambient conditions and near‐UV or visible light versus benchmark P25 TiO2. In units of activity μmol m?2 h?1, N‐Ni‐TiO2 is five‐fold more active than P25, and N‐Cu‐TiO2 is 44‐fold more active. The photocatalytic activity of N‐M‐TiO2 increases from Cr to Co and Ni, whereas the photoluminescence decreases; the change in activity is due to the modulation of charge recombination.  相似文献   

5.
Herein, Pt‐decorated TiO2 nanocube hierarchy structure (Pt‐TNCB) was fabricated by a facile solvothermal synthesis and in‐situ photodeposition strategy. The Pt‐TNCB exhibits an excellent solar‐driven photocatalytic hydrogen evolution rate (337.84 μmol h?1), which is about 37 times higher than that of TNCB (9.19 μmol h?1). Interestingly, its photocatalytic property is still superior to TNCB with post modification Pt (1 wt %) (208.11 μmol h?1). The introduction of Pt efficiently extends the photoresponse of the composite material from UV to visible light region, simultaneously boosting their solar‐driven photocatalytic performance, which attribute to the porous structure, the sub size TNCB, the SPR effect of Pt NPs and strong interaction of two components. In fact, Pt NPs can enhance collective oscillations on delocalized electrons, which is conducive to capture electrons and hinder the recombination of photogenerated electron‐hole pairs, leading to the longer lifetime of photogenerated charges. The fabrication of Pt‐TNCB photocatalyst with SPR effect may provide a promising method to improve visible‐light photocatalytic activities for traditional photocatalysts.  相似文献   

6.
Modular optimization of metal–organic frameworks (MOFs) was realized by incorporation of coordinatively unsaturated single atoms in a MOF matrix. The newly developed MOF can selectively capture and photoreduce CO2 with high efficiency under visible‐light irradiation. Mechanistic investigation reveals that the presence of single Co atoms in the MOF can greatly boost the electron–hole separation efficiency in porphyrin units. Directional migration of photogenerated excitons from porphyrin to catalytic Co centers was witnessed, thereby achieving supply of long‐lived electrons for the reduction of CO2 molecules adsorbed on Co centers. As a direct result, porphyrin MOF comprising atomically dispersed catalytic centers exhibits significantly enhanced photocatalytic conversion of CO2, which is equivalent to a 3.13‐fold improvement in CO evolution rate (200.6 μmol g?1 h?1) and a 5.93‐fold enhancement in CH4 generation rate (36.67 μmol g?1 h?1) compared to the parent MOF.  相似文献   

7.
A photocatalytic system containing a perylene bisimide (PBI) dye as a photosensitizer anchored to titanium dioxide (TiO2) nanoparticles through carboxyl groups was constructed. Under solar‐light irradiation in the presence of sacrificial triethanolamine (TEOA) in neutral and basic conditions (pH 8.5), a reaction cascade is initiated in which the PBI molecule first absorbs green light, giving the formation of a stable radical anion (PBI.?), which in a second step absorbs near‐infrared light, forming a stable PBI dianion (PBI2?). Finally, the dianion absorbs red light and injects an electron into the TiO2 nanoparticle that is coated with platinum co‐catalyst for hydrogen evolution. The hydrogen evolution rates (HERs) are as high as 1216 and 1022 μmol h?1 g?1 with simulated sunlight irradiation in neutral and basic conditions, respectively.  相似文献   

8.
A visible‐light driven H2 evolution system comprising of a RuII dye ( RuP ) and CoIII proton reduction catalysts ( CoP ) immobilised on TiO2 nanoparticles and mesoporous films is presented. The heterogeneous system evolves H2 efficiently during visible‐light irradiation in a pH‐neutral aqueous solution at 25 °C in the presence of a hole scavenger. Photodegradation of the self‐assembled system occurs at the ligand framework of CoP , which can be readily repaired by addition of fresh ligand, resulting in turnover numbers above 300 mol H2 (mol CoP )?1 and above 200,000 mol H2 (mol TiO2 nanoparticles)?1 in water. Our studies support that a molecular Co species, rather than metallic Co or a Co‐oxide precipitate, is responsible for H2 formation on TiO2. Electron transfer in this system was studied by transient absorption spectroscopy and time‐correlated single photon counting techniques. Essentially quantitative electron injection takes place from RuP into TiO2 in approximately 180 ps. Thereby, upon dye regeneration by the sacrificial electron donor, a long‐lived TiO2 conduction band electron is formed with a half‐lifetime of approximately 0.8 s. Electron transfer from the TiO2 conduction band to the CoP catalysts occurs quantitatively on a 10 μs timescale and is about a hundred times faster than charge‐recombination with the oxidised RuP . This study provides a benchmark for future investigations in photocatalytic fuel generation with molecular catalysts integrated in semiconductors.  相似文献   

9.
Graphene analogues of TaS2 and TiS2 (3–4 layers), prepared by Li intercalation followed by exfoliation in water, were characterized. Nanocomposites of CdS with few‐layer TiS2 and TaS2 were employed for the visible‐light‐induced H2 evolution reaction (HER). Benzyl alcohol was used as the sacrificial electron donor, which was oxidized to benzaldehyde during the reaction. Few‐layer TiS2 is a semiconductor with a band gap of 0.7 eV, and its nanocomposite with CdS showed an activity of 1000 μmol h?1 g?1. The nanocomposite of few‐layer TaS2, in contrast, gave rise to higher activity of 2320 μmol h?1 g?1, which was attributed to the metallic nature of few‐layer TaS2. The amount of hydrogen evolved after 20 and 16 h for the CdS/TiS2 and CdS/TaS2 nanocomposites was 14833 and 28132 μmol, respectively, with turnover frequencies of 0.24 and 0.57 h?1, respectively.  相似文献   

10.
Develop a photocatalyst system for solar energy conversion to electric energy or chemical energy is a topic of great interest for fundamental and practical importance. In this study, nitrogen-doped TiO2 with high hydrogen production by photocatalytic water splitting were prepared by microwave-assisted hydrothermal method using titanium sulfate as precursor in the presence of urea. The nitrogen doped TiO2 prepared in this study was pure anatase phase with a high surface area (372?m2?g?1) and showed a very high hydrogen evolution rate of water splitting reaction under UV light irradiation (4,386?μmol?g?1?h?1) and visible light irradiation (185?μmol?g?1?h?1) which was about 15?times higher than commercial TiO2 (Degussa P25).  相似文献   

11.
Graphite carbon nitride (g‐C3N4) is a promising candidate for photocatalytic hydrogen production, but only shows moderate activity owing to sluggish photocarrier transfer and insufficient light absorption. Herein, carbon quantum dots (CQDs) implanted in the surface plane of g‐C3N4 nanotubes were synthesized by thermal polymerization of freeze‐dried urea and CQDs precursor. The CQD‐implanted g‐C3N4 nanotubes (CCTs) could simultaneously facilitate photoelectron transport and suppress charge recombination through their specially coupled heterogeneous interface. The electronic structure and morphology were optimized in the CCTs, contributing to greater visible light absorption and a weakened barrier of the photocarrier transfer. As a result, the CCTs exhibited efficient photocatalytic performance under light irradiation with a high H2 production rate of 3538.3 μmol g?1 h?1 and a notable quantum yield of 10.94 % at 420 nm.  相似文献   

12.
ZnIn2S4 microspheres (ZIS MSs) were for the first time decorated with carbon quantum dots (CQDs) and platinum nanoparticles (NPs) as dual co‐catalysts of for photocatalytic H2 production. The ZIS MSs co‐loaded with CQDs and Pt exhibited a high photocatalytic H2 production rate of 1032.2 μmol h?1 g?1 with an apparent quantum efficiency of 2.2 % (420 nm) in triethanolamine aqueous solution under visible‐light irradiation, which was much higher than the respective photocatalytic rates of pure ZIS, Pt loaded ZIS, and CQDs‐decorated ZIS. Such a great enhancement was attributed to the integrative effect of good crystallization, enhanced light absorption, high electrical conductivity of CQDs, and the vectorial electron transfer from ZIS to CQDs and Pt NPs (ZIS→CQDs→Pt).  相似文献   

13.
Hierarchical graphene oxide (GO)‐TiO2 composite microspheres with different GO/TiO2 mass ratios were successfully prepared by mixing GO and TiO2 microspheres under ultrasonic conditions. Ultrasonication helped the GO and TiO2 microsphere to uniformly mix on the microscale. The results showed that the GO‐TiO2 composites that were prepared by ultrasonic mixing exhibited significantly higher hydrogen‐evolution rates than those that were synthesized by simple mechanical grinding, owing to synergetic effects, including enhanced light absorption and scattering, as well as improved interfacial charge transfer because of the excellent contact between the GO sheets and TiO2 microspheres. In addition, GO‐TiO2‐3 (3 wt. % GO) showed the highest hydrogen‐generation rate (305.6 μmol h?), which was about 13 and 3.3‐times higher than those of TiO2 microsphere and GO‐P25 (with 3 wt. % GO), respectively. Finally, a tentative mechanism for hydrogen production is proposed and supported by photoluminescence and transient photocurrent measurements. This work highlights the potential applications of GO‐TiO2 composite microspheres in the field of clean‐energy production.  相似文献   

14.
Single‐atom catalysts have demonstrated their superiority over other types of catalysts for various reactions. However, the reported nitrogen reduction reaction single‐atom electrocatalysts for the nitrogen reduction reaction exclusively utilize metal–nitrogen or metal–carbon coordination configurations as catalytic active sites. Here, we report a Fe single‐atom electrocatalyst supported on low‐cost, nitrogen‐free lignocellulose‐derived carbon. The extended X‐ray absorption fine structure spectra confirm that Fe atoms are anchored to the support via the Fe‐(O‐C2)4 coordination configuration. Density functional theory calculations identify Fe‐(O‐C2)4 as the active site for the nitrogen reduction reaction. An electrode consisting of the electrocatalyst loaded on carbon cloth can afford a NH3 yield rate and faradaic efficiency of 32.1 μg h?1 mgcat.?1 (5350 μg h?1 mgFe?1) and 29.3 %, respectively. An exceptional NH3 yield rate of 307.7 μg h?1 mgcat.?1 (51 283 μg h?1 mgFe?1) with a near record faradaic efficiency of 51.0 % can be achieved with the electrocatalyst immobilized on a glassy carbon electrode.  相似文献   

15.
A novel dopant‐free TiO2 photocatalyst (Vo.‐TiO2), which is self‐modified by a large number of paramagnetic (single‐electron‐trapped) oxygen vacancies, was prepared by calcining a mixture of a porous amorphous TiO2 precursor, imidazole, and hydrochloric acid at elevated temperature (450 °C) in air. Control experiments demonstrate that the porous TiO2 precursor, imidazole, and hydrochloric acid are all necessary for the formation of Vo.‐TiO2. Although the synthesis of Vo.‐TiO2 originates from such a multicomponent system, this synthetic approach is facile, controllable, and reproducible. X‐ray diffraction, XPS, and EPR spectroscopy reveal that the Vo.‐TiO2 material with a high crystallinity embodies a mass of paramagnetic oxygen vacancies, and is free of other dopant species such as nitrogen and carbon. UV/Vis diffuse‐reflectance spectroscopy and photoelectrochemical measurement demonstrate that Vo.‐TiO2 is a stable visible‐light‐responsive material with photogenerated charge separation efficiency higher than N‐TiO2 and P25 under visible‐light irradiation. The Vo.‐TiO2 material exhibits not only satisfactory thermal‐ and photostability, but also superior photocatalytic activity for H2 evolution (115 μmol h?1 g?1) from water with methanol as sacrificial reagent under visible light (λ>400 nm) irradiation. Furthermore, the effects of reaction temperature, ratio of starting materials (imidazole:TiO2 precursor) and calcination time on the photocatalytic activity and the microstructure of Vo.‐TiO2 were elucidated.  相似文献   

16.
Methods to synthesize crystalline covalent triazine frameworks (CTFs) are limited and little attention has been paid to development of hydrophilic CTFs and photocatalytic overall water splitting. A route to synthesize crystalline and hydrophilic CTF‐HUST‐A1 with a benzylamine‐functionalized monomer is presented. The base reagent used plays an important role in the enhancement of crystallinity and hydrophilicity. CTF‐HUST‐A1 exhibits good crystallinity, excellent hydrophilicity, and excellent photocatalytic activity in sacrificial photocatalytic hydrogen evolution (hydrogen evolution rate up to 9200 μmol g?1 h?1). Photocatalytic overall water splitting is achieved by depositing dual co‐catalysts in CTF‐HUST‐A1, with H2 evolution and O2 evolution rates of 25.4 μmol g?1 h?1 and 12.9 μmol g?1 h?1 in pure water without using sacrificial agent.  相似文献   

17.
Visible‐light‐driven photoreduction of CO2 to energy‐rich chemicals in the presence of H2O without any sacrifice reagent is of significance, but challenging. Herein, Eosin Y‐functionalized porous polymers (PEosinY‐N, N=1–3), with high surface areas up to 610 m2 g?1, are reported. They exhibit high activity for the photocatalytic reduction of CO2 to CO in the presence of gaseous H2O, without any photosensitizer or sacrifice reagent, and under visible‐light irradiation. Especially, PEosinY‐1 derived from coupling of Eosin Y with 1,4‐diethynylbenzene shows the best performance for the CO2 photoreduction, affording CO as the sole carbonaceous product with a production rate of 33 μmol g?1 h?1 and a selectivity of 92 %. This work provides new insight for designing and fabricating photocatalytically active polymers with high efficiency for solar‐energy conversion.  相似文献   

18.
Transition metal Fe, Co, Ni and Cu doped strontium titanate-rich SrTiO3@TiO2 (STO@T) materials were prepared by hydrothermal method. The prepared doped materials exhibit better photocatalytic CO2 reduction to CH4 ability under visible light conditions. Among them, Fe-doped and undoped SrTiO3@TiO2 under visible light conditions CO2 reduction products only CO, while M-STO@T (M=Co, Ni, Cu) samples converted CO2 to CH4. The average methane yield of Ni-doped STO@T samples are as high as 73.85 μmol g−1 h−1. The production of methane is mainly due to the increase in the response of the doped samples to visible light. And the increase in the separation rate of photogenerated electrons and holes and the efficiency of electron transport caused by the generation of impurity levels. The impurity level caused by Ti3+ plays an important role in the production of methane by CO2 visible light reduction. Ni doping effectively improves the photocatalytic performance of STO@T and CO2 reduction mechanism were explained.  相似文献   

19.
Progress toward the preparation of porous organic polymers (POPs) with task‐specific functionalities has been exceedingly slow—especially where polymers containing low‐oxidation phosphorus in the structure are concerned. A two‐step topotactic pathway for the preparation of phosphabenzene‐based POPs (Phos‐POPs) under metal‐free conditions is reported, without the use of unstable phosphorus‐based monomers. The synthetic route allows additional functionalities to be introduced into the porous polymer framework with ease. As an example, partially fluorinated Phos‐POPs (F‐Phos‐POPs) were obtained with a surface area of up to 591 m2 g?1. After coordination with Ru species, a Ru/F‐Phos‐POPs catalyst exhibited high catalytic efficiency in the formylation of amines (turnover frequency up to 204 h?1) using a CO2/H2 mixture, in comparison with the non‐fluorinated analogue (43 h?1) and a Au/TiO2 heterogeneous catalysts reported previously (<44 h?1). This work describes a practical method for synthesis of porous organic phosphorus‐based polymers with applications in transition‐metal‐based heterogeneous catalysis.  相似文献   

20.
In recent decades, solar‐driven hydrogen production over semiconductors has attracted tremendous interest owing to the global energy and environmental crisis. Among various semiconductor materials, TiO2 exhibits outstanding photocatalytic properties and has been extensively applied in diverse photocatalytic and photoelectric systems. However, two major drawbacks limit practical applications, namely, high charge‐recombination rate and poor visible‐light utilization. In this work, heterostructured TiO2 nanotube arrays grafted with Cr‐doped SrTiO3 nanocubes were fabricated by simply controlling the kinetics of hydrothermal reactions. It was found that coupling TiO2 nanotube arrays with regular SrTiO3 nanocubes can significantly improve the charge separation. Meanwhile, doping Cr cations into SrTiO3 nanocubes proved to be an effective and feasible approach to enhance remarkably the visible‐light response, which was also confirmed by theoretical calculations. As a result, the rate of photoelectrochemical hydrogen evolution of these novel heteronanostructures is an order of magnitude larger than those of TiO2 nanotube arrays and other previously reported SrTiO3/TiO2 nanocomposites under visible‐light irradiation. Furthermore, the as‐prepared Cr‐doped SrTiO3/TiO2 heterostructures exhibit excellent durability and stability, which are favorable for practical hydrogen production and photoelectric nanodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号