首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The current generation of solid‐contact ion‐selective electrodes (SC‐ISE) suffer from lack of stability and lifetime. When using such sensors for remote, continuous, or autonomous measurements, these analytical characteristics are especially critical. In this work we compare several different configurations of ISEs to be deployed for monitoring in extreme environments, and present a novel configuration to improve performance. In particular we compare a polymeric hydrogel‐based ISE, used previously in the Wet Chemistry Lab on the Phoenix Mars Lander, with three variations of solid supported nanoporous carbon‐based ISEs. The symmetric membrane (SM) solid contact ISE (SM‐SC‐ISE) shows promise in overcoming many of the analytical problems encountered with hydrogel and solid‐state devices. The results indicate that sensors based on the SM configuration provide improvements in both stability, and most importantly reproducibility, over other existing SC‐ISEs. Future work will continue testing the SM configuration for use in a variety of extreme environments, including continuous monitoring and in‐situ analyses in extraterrestrial environments.  相似文献   

2.
Ion‐selective electrodes (ISEs) are widely used tools for fast and accurate ion sensing. Herein their design is simplified by embedding a potentiometric cell into paper, complete with an ISE, a reference electrode, and a paper‐based microfluidic sample zone that offer the full function of a conventional ISE setup. The disposable planar paper‐based ion‐sensing platform is suitable for low‐cost point‐of‐care and in‐field testing applications. The design is symmetrical and each interfacial potential within the cell is well defined and reproducible, so that the response of the device can be theoretically predicted. For a demonstration of clinical applications, paper‐based Cl? and K+ sensors are fabricated with highly reproducible and linear responses towards different concentrations of analyte ions in aqueous and biological samples. The single‐use devices can be fabricated by a scalable method, do not need any pretreatment prior to use, and only require a sample volume of 20 μL.  相似文献   

3.
《Electroanalysis》2006,18(1):7-18
Conducting polymers, i.e., electroactive conjugated polymers, are useful both as ion‐to‐electron transducers and as sensing membranes in solid‐state ion‐selective electrodes. Recent achievements over the last few years have resulted in significant improvements of the analytical performance of solid‐contact ion‐selective electrodes (solid‐contact ISEs) based on conducting polymers as ion‐to‐electron transducer combined with polymeric ion‐selective membranes. A significant amount of research has also been devoted to solid‐state ISEs based on conducting polymers as the sensing membrane. This review gives a brief summary of the progress in the area in recent years.  相似文献   

4.
The two most promising approaches for preparing solid contacts (SCs) for polymeric membrane based ion‐selective electrodes (ISEs) are based on the use of large surface areas conducting materials with high capacitance (e. g., various carbon nanotubes) and redox active materials (e. g. conducting polymers). While many of the essential requirements for the potential stability of SCISEs were addressed, the E0 reproducibility and its predictability, that would enable single use of such electrodes without calibration is still a challenge, i. e., the fabrication of electrodes with sufficiently close E0 and slope values to enable the characterization of large fabrication batches through the calibration of only a small number of electrodes. The most generic solution seems to be the adjustment of the E0 potential by polarization prior to the application of the ion‐selective membrane. This approach proved to be successful in case of conducting polymer‐based solid contacts, but has to be still explored for capacitive solid contact based ISEs, which is the purpose of this paper. We have chosen a well‐established highly lipophilic multi‐walled carbon nanotube (MWCNT), i. e. octadecane modified MWCNT (OD‐MWCNT), that is investigated in the comparative context of a similarly lipophilic conducting polymer solid contact (a perfluorinated alkanoate side chain functionalized poly(3,4‐ethylenedioxythiophene)). While, the OD‐MWCNT based SCISEs had inherently small standard deviation of their E0 values (less than 5 mV) this could be further improved by external polarization and short circuiting the SCISEs.  相似文献   

5.
Until now both ion‐to‐electron transducers as well as large surface area nanostructured conducting materials were successfully used as solid contacts for polymer‐based ion‐selective electrodes. We were interested to explore the combination of these two approaches by fabricating ordered electrically conducting polymer (ECP) nanostructures using 3D nanosphere lithography and electrosynthesis to provide a high surface area and capacitive interface for solid contact ion‐selective electrodes (SC‐ISEs). For these studies we used poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT(PSS)) films with 750 nm diameter interconnected pores as the intermediate layer between a glassy carbon electrode and a Ag+ ‐selective polymeric membrane. We also investigated the feasibility of loading the voids created in the polymer film with a lipophilic redox mediator (1,1’‐dimethylferrocene) to provide the respective ISEs with well‐defined/controllable E0 values. These expectations were fulfilled as the standard deviation of E0 values were reduced with almost an order of magnitude for 3D nanostructured SC‐ISEs filled with the redox mediator as compared to their redox mediator‐free analogs. The detrimental effect of the redox mediator extraction into the plasticized PVC‐based ion‐selective membrane (ISM) was efficiently suppressed by replacing the PVC‐based ISMs with a low diffusivity silicone rubber matrix.  相似文献   

6.
Current paper‐based potentiometric ion‐sensing platforms are planar devices used for clinically relevant ions. These devices, however, have not been designed for the potentiometric biosensing of proteins or small molecule analytes. A three‐dimensional origami paper‐based device, in which a solid‐contact ion‐selective electrode is integrated with an all‐solid‐state reference electrode, is described for the first time. The device is made by impregnation of paper with appropriate bioreceptors and reporting reagents on different zones. By folding and unfolding the paper structures, versatile potentiometric bioassays can be performed. A USB‐controlled miniaturized electrochemical detector can be used for simple and in situ measurements. Using butyrylcholinesterase as a model enzyme, the device has been successfully applied to the detection of enzyme activities and organophosphate pesticides involved in the enzymatic system as inhibitors. The proposed 3D origami paper device allows the potentiometric biosensing of proteins and small molecules in a simple, portable, and cost‐effective way.  相似文献   

7.
A new label‐free fluorescence turn‐on strategy for highly sensitive biosensing has been developed. A negatively charged perylene probe was synthesized. Polycations could induce aggregation of the perylene probe through noncovalent interactions and the fluorescence of the probe’s monomer was efficiently quenched. Upon addition of a single‐stranded nucleic acid, competitive binding of the negatively charged nucleic acid (a polyanion) to the cationic polymer resulted in the release of a monomer and thus a turn‐on fluorescence signal was detected. Without the use of any amplification techniques, a detection limit of 2 pM DNA was obtained. Based on these results, an assay strategy for the highly sensitive detection of alkaline phosphatase (ALP) activity has been demonstrated. λ Exonuclease (λ exo) could degrade 5′‐phosphorylated single‐stranded DNA. However, when the DNA sample was treated with ALP, the phosphate functional group was removed by ALP and it could no longer be degraded by λ exo. Binding of the DNA to the perylene probe–polycation complex resulted in a turn‐on fluorescence signal, which could be used for sensing of ALP. The method is highly sensitive, a limit of detection as low as 0.02 mU mL?1 ALP was obtained. Our method is simple, convenient, highly sensitive, and inexpensive.  相似文献   

8.
Herein we report the development of solid‐phase microextraction (SPME) devices designed to perform fast extraction/enrichment of target analytes present in small volumes of complex matrices (i.e. V≤10 μL). Micro‐sampling was performed with the use of etched metal tips coated with a thin layer of biocompatible nano‐structured polypyrrole (PPy), or by using coated blade spray (CBS) devices. These devices can be coupled either to liquid chromatography (LC), or directly to mass spectrometry (MS) via dedicated interfaces. The reported results demonstrated that the whole analytical procedure can be carried out within a few minutes with high sensitivity and quantitation precision, and can be used to sample from various biological matrices such as blood, urine, or Allium cepa L single‐cells.  相似文献   

9.
10.
Recent research on microfluidic paper‐based analytical devices (μPADs) has shown that paper has great potential for the fabrication of low‐cost diagnostic devices for healthcare and environmental monitoring applications. Herein, electrochemiluminescence (ECL) was introduced for the first time into μPADs that were based on screen‐printed paper‐electrodes. To further perform high‐specificity, high‐performance, and high‐sensitivity ECL on μPADs for point‐of‐care testing (POCT), ECL immunoassay capabilities were introduced into a wax‐patterned 3D paper‐based ECL device, which was characterized by SEM, contact‐angle measurement, and electrochemical impedance spectroscopy. With the aid of a home‐made device‐holder, the ECL reaction was triggered at room temperature. By using a typical tris(bipyridine)ruthenium–tri‐n‐propylamine ECL system, this paper‐based ECL 3D immunodevice was applied to the diagnosis of carcinoembryonic antigens in real clinical serum samples. This contribution further expands the number of sensitive and specific detection modes of μPADs.  相似文献   

11.
This study is focused on the development of electrochromic (EC) materials that could be incorporated into electrically‐driven switchable devices such as electrochromogenic glasses. The ultimate goal of this research is to depart from the complexity of the EC device construction which is in use today. Such construction consists of three layers each of them incorporating a specific functionality: the electrochromophore, the electrolyte and the ion storage, assembled between two transparent or reflective electrodes. In most of these conventional devices the electrolyte layer is a liquid or a gel. Since solid‐state EC devices are of high commercial interest, we are exploring various avenues to reduce the number of layers to one layer that is all‐solid and electrochromically/electrolytically and ionically functional. The design strategy is based on the use of polymers such as poly(epichlorohydrin‐co‐ethylene oxide), poly(vinyl butyral) and poly(ethylene‐co‐methacrylic acid) ionomer, to which EC properties were introduced by grafting reactions with specifically synthesized carbazole derivatives. A combination of analytical techniques was used to characterize the monomers and the carbazole‐grafted polymers. A proof of concept was demonstrated for a single‐layer, all‐solid‐state EC device consisting of a film of poly(ECH‐co‐EO) containing pendent carbazole groups, assembled between two transparent electrodes, Sn‐doped In2O3 oxide‐coated glasses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
In this work, a mediator‐less and compartment‐less glucose/air enzymatic biofuel cell (BFC) was introduced into microfluidic paper‐based analytical devices (μ‐PADs) with gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs)‐modified paper electrode as the anodic and cathodic substrate, respectively, to implement self‐powered, sensitive, low‐cost and simple DNA detection. As a further development of the analytical equipment, an all‐solid‐state paper supercapacitor (PS) was designed and integrated into the BFC for current amplification, and a terminal digital multi‐meter detector (DMM) was introduced for the current detection. A highly sensitive DNA sensor was fabricated by covalently immobilizing the capture DNA in the AuNPs‐modified anode. The nanoporous gold conjugated with bienzymes, glucose oxidase and horseradish peroxidase, which were used as electrochemical labels. The electrons generated at the anode flow through an external circuit to the PtNPs‐modified cathode that catalyzed the reduction of oxygen with the participation of protons. In addition, the generated current could be collected and stored by the PS. After that, the PS was automatically shorted under the control of a switch to output an instantaneously amplified current, which could be sensitively detected by the terminal DMM. At the optimal conditions, the paper‐based analytical platform can detect DNA at the femtomole level. This approach also shows excellent specificity toward single nucleotide mismatches.  相似文献   

13.
In this paper we describe the fabrication of novel 3D microfluidic paper‐based analytical devices (3D‐μPADs) and a 3D microfluidic thread/paper‐based analytical device (3D‐μTPAD) to detect glucose and BSA through colorimetric assays. The 3D‐μPAD and 3D‐μTPAD consisted of three (wax, heat pressed wax‐printed paper, single‐sided tape) and four (hole‐punched single‐sided tape, blank chromatography circles, heat‐pressed wax‐printed paper, hole‐punched single‐sided tape containing trifurcated thread) layers, respectively. The saturation curves for each assay were generated for all platforms. For the glucose assay, a solution of glucose oxidase (GOx), horseradish peroxidase, and potassium iodide was flowed through each platform and, upon contact with glucose, generated a yellow‐brown color indicative of the oxidation of iodide to iodine. For the protein assay, BSA was flowed through each device and, upon contact with citrate buffer and tetrabromophenol blue, resulted in a color change from yellow to blue. The devices were dried, scanned, and analyzed yielding a correlation between either yellow intensity and glucose concentration or cyan intensity and BSA concentration. A similar glucose assay, using unknown concentrations of glucose in artificial urine, was conducted and, when compared to the saturation curve, showed good correlation between the theoretical and actual concentrations (percent differences <10%). The development of 3D‐μPADs and 3D‐μTPADs can further facilitate the use of these platforms for colorimetric bioassays.  相似文献   

14.
With billions of assays performed every year, ion‐selective electrodes (ISEs) provide a simple and fast technique for clinical analysis of blood electrolytes. The development of cheap, miniaturized solid‐contact (SC‐)ISEs for integrated systems, however, remains a difficult balancing act between size, robustness, and reproducibility, because the defined interface potentials between the ion‐selective membrane and the inner reference electrode (iRE) are often compromised. We demonstrate that target cation‐sensitive intercalation compounds, such as partially charged lithium iron phosphate (LFP), can be applied as iREs of the quasi‐first kind for ISEs. The symmetrical response of the interface potentials towards target cations ultimately results in ISEs with high robustness towards the inner filling (ca. 5 mV dec?1 conc.) as well as robust and miniaturized SC‐ISEs. They have a predictable and stable potential derived from the LiFePO4/FePO4 redox couple (97.0±1.5 mV after 42 days).  相似文献   

15.
Solid contact (SC) ion‐selective electrodes (ISEs) have been recognized as the next generation of ISEs. In this work, the electrical conductivity and mechanical strength of a carbon nanotube (CNT) tower enable it to play the dual roles of transducer and substrate for micro SC‐ISEs. The electrode had a close to Nernstian slope of 35 mV/decade aCa2+, a linear range of four orders of magnitude of calcium ion activity (10?5.6 to 10?1.8 M), and a detection limit of 1.6×10?6 M. The simplified fabrication by a one‐step drop casting makes miniaturizing SC‐ISEs and fabricating sensor arrays easier to achieve.  相似文献   

16.
Nonstoichiometric interpolyelectrolyte complexes (IPECs) as colloidal dispersions have been widely used for the past decade as reactive materials for flocculation and surface modification. In this context, some new aspects of the preparation and properties of IPEC nanoparticles based on NaPAMPS, in salt‐free aqueous solutions, are reported in this article. IPEC dispersions with different characteristics, z‐averaged particle sizes, polydispersity indices, and colloidal stabilities were tailored by the addition rate of the titrant, a less investigated factor in the synthesis of IPECs as nanoparticles. Poly(sodium 2‐acrylamido‐2‐methylpropanesulfonate) (NaPAMPS) and two polycations bearing positive charges in the backbone, poly(diallyldimethylammonium chloride) and a polycation containing 95 mol % N,N‐dimethyl‐2‐hydroxypropyleneammonium chloride units, were used for this purpose. The complex nanoparticle characteristics and storage stability were monitored via the optical density at 500 nm and dynamic light scattering. IPEC nanoparticles with z‐averaged particle sizes of 100–250 nm resulted from the same polyion pair and the same polyion concentrations when the addition rate of the titrant, either the polyanion or polycation, varied within the range of 0.1–1.5 mL/mL of the starting polyion × h. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5244–5252, 2004  相似文献   

17.
《Electroanalysis》2003,15(20):1598-1605
It is well known that non‐ionic surfactants (NIS) influence remarkably the potentiometric measurements with liquid membrane ion selective electrodes (ISEs), interfering particularly on performance of ISEs for earth‐alkali metals, for which the loss of selectivity with regard to alkali metals has been documented. These studies indicate that such interferences are due to the extraction of surfactants within the membrane, where a competition takes place between the originally present ionophore and the surfactant which also acts as a ligand for alkali metals. The interpretation of such phenomena enabled one to exploit this interference for analytical purposes by membrane/solution extraction experiment monitored by UV measurements and by impedance FRA analysis on coated wire electrodes. Using Ca/Mg ISEs based on the neutral ionophore ETH 4030, it has been established that the logarithm of the Ca/Mg over Na potentiometric selectivity constant is linearly correlated with the concentration of NIS like Tegopren 5863 and Triton X‐100. The proposed method has been applied for the development of a new potentiometric analytical procedure for the determination of Tegopren 5863 in synthetic seawater (SSW), ranging from 0.25 to 5 ppm. Our procedure consists in the exposure of the electrode to stirred SSW containing the surfactant; the progressive extraction of Tegopren 5863 causes a growth in electrode's sensitivity to Na+ and K+, losing selectivity for Ca2+ and Mg2+. In turn this induces an increase of EMF, as all these ions are present in the studied matrix. The potential drift was monitored for 15 hours, showing that the process reaches thermodynamic equilibrium after about 12 hours of exposure. This method presents a value of 210 ppb of Tegopren 5863 as detection limit.  相似文献   

18.
Single‐walled carbon nanotube (SWNT) based devices have been developed for the real‐time detection of nitrophenols in aqueous solution. SWNTs are assembled to electrodes using AC dielectrophoresis technique. The SWNT devices exhibit not only high sensitivity to nitrophenol compounds, but also good reusability. Charge transfer between nitro group and SWNTs, and the metal‐nanotube interface modification are hypothesized to be the possible origins of conductance change. These results indicated that the SWNT devices can be utilized as a simple, low cost, sensitive, and reusable platform for real‐time detection of nitrophenol compounds.  相似文献   

19.
Diverse morphologies of multidimensional hierarchical single‐crystalline ZnO nanoarchitectures including nanoflowers, nanobelts, and nanowires are obtained by use of a simple thermal evaporation and vapour‐phase transport deposition technique by placing Au‐coated silicon substrates in different positions inside a furnace at process temperatures as low as 550 °C. The nucleation and growth of ZnO nanostructures are governed by the vapour–solid mechanism, as opposed to the commonly reported vapour–liquid–solid mechanism, when gold is used in the process. The morphological, structural, compositional and optical properties of the synthesized ZnO nanostructures can be effectively tailored by means of the experimental parameters, and these properties are closely related to the local growth temperature and gas‐phase supersaturation at the sample position. In particular, room‐temperature photoluminescence measurements reveal an intense near‐band‐edge ultraviolet emission at about 386 nm for nanobelts and nanoflowers, which suggests that these nanostructures are of sufficient quality for applications in, for example, optoelectronic devices.  相似文献   

20.
《Electroanalysis》2004,16(10):843-851
Cationic surfactants of different types were determined using a few potentiometric sensors based on ion‐pair complexes (dodecyldimethylbenzylammonium dodecylsulfate, dodecylmethylbenzylammonium dodecylbenzensulfonate, tetrahexadecylammonium dodecylsulfate and Hyamine (benzethonium dodecylsulfate)) as sensing materials. The response of the all‐solid state surfactant sensitive electrode based on a Teflonized graphite conducting substrate, coated with a PVC membrane containing sensing material, was investigated in the solutions of Hyamine and hexadecyltrimethylammonium ion in the concentration range from 1 μM to 10 mM. Potentiometric surfactant cation titration has been performed using sodium dodecylsulfate as titrant and an ion‐pair‐based surfactant sensitive electrode as a potentiometric indicator. Several commercial surfactant products have also been titrated and the results were compared with those obtained with two‐phase standard titration method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号