首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
Dispersive liquid–liquid microextraction using deep eutectic solvents, as novel extraction solvents, was developed for the separation, preconcentration, and determination of chlorophenol, 2,3-dihydroxybenzoic acid, p-cresol, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol in vegetable oil. Seven deep eutectic solvents composed of choline chloride and different hydrogen bond donors (ethyl glycol, glycerol, 1,2-butanediol, 1,4-butanediol, 1,6-hexanediol, urea, and acetic acid) were characterized. The deep eutectic solvents formed by choline chloride-1,6-hexanediol in a 1:2 molar ratio provided the highest extraction efficiency. The sonication time, deep eutectic solvent volume, and disperser solvent were optimized. Under the optimal conditions of a sonication time of 11?min, a deep eutectic solvent volume of 90?µL, and acetone as the disperser solvent, extraction recoveries from 76.1 to 88.3% were obtained with 8.46 to 9.46 enrichment factors and the limits of detection exceeding 0.1?µg/mL with the relative standard deviations from 1.0 to 3.5%. This method using dispersive liquid–liquid microextraction with deep eutectic solvents is simple and provides high enrichment.  相似文献   

2.
Several deep eutectic solvents prepared by the complexation of choline chloride as the hydrogen bond acceptor and hydrogen bond donors such as urea, thiourea, ethylene glycol, and glycerol were employed to partition glaucarubinone, an antimalarial compound present in roots of the plant, Simarouba glauca. Among all the solvents, the deep eutectic solvent consisting of the mixture of choline chloride and urea the most suitable to partition the antimalarial compound from the extract selectively. Analytical tools such as high‐performance liquid chromatography and electrospray ionization mass spectrometry were used for characterizations, and glaucarubinone extracted from the roots of the plant by conventional solvent extraction method was used as a reference for comparison. The hydrogen and noncovalent bonds formed between glaucarubinone and the deep eutectic solvents could be responsible for the selective partition of the drug molecule.  相似文献   

3.
A highly efficient and ecofriendly extraction method using deep eutectic solvents was developed to extract bioactive flavonoids from Abelmoschus manihot (Linn.) Medicus flowers. First, a series of deep eutectic solvents using choline chloride as hydrogen bond acceptor with different hydrogen bond donors was successfully synthesized. Then, the types of deep eutectic solvents and the extraction conditions for bioactive flavonoids (hyperoside, isoquercitrin, and myricetin) were optimized based on the flavonoids extraction efficiencies. The optimized deep eutectic solvent for hyperoside and isoquercitrin extraction was composed of choline chloride and acetic acid with a molar ratio of 1:2. The optimized deep eutectic solvent for myricetin extraction was composed of one mole of choline chloride and two moles of methacrylic acid. The optimal extraction conditions were set as: solid to solvent ratio, 35:1 (mg/mL); extraction time, 30 min; extraction temperature, 30°C. Qualitative and quantitative analysis were performed using ultra high performance liquid chromatography with tandem mass spectrometry and high‐performance liquid chromatography. And the extraction efficiencies of hyperoside, isoquercitrin, and myricetin under optimal extraction conditions were calculated as 11.57, 5.64, and 1.11 mg/g, much higher than those extracted by traditional extraction solvents. Therefore, the prepared deep eutectic solvents can be selected as alternative solvent to extract bioactive flavonoids.  相似文献   

4.
In recent years, hydrophobic deep eutectic solvents as new generation of green solvents have attracted wide attention in liquid microextraction technique. In this article, four hydrophobic deep eutectic solvents composed of trioctylmethylammonium chloride and oleic acid were designed and prepared firstly. Combined with high‐performance liquid chromatography, these deep eutectic solvents were used as an extraction solvent in vortex‐assisted dispersive liquid–liquid microextraction for the selective enrichment and indirect determination of trace nitrite from real water and biological samples. This method is based on the diazotization‐coupling reaction of nitrite with p‐nitroaniline and diphenylamine in acidic water, and then the nitrite is quantified indirectly by measuring the obtained azo compounds. Some factors influencing the extraction efficiency, including the reaction and extraction conditions, were investigated. Under the optimized conditions, the method has a linear range of 1–300 μg/L with a correlation coefficient of 0.9924, limit of detection of 0.2 μg/L, limit of quantitation of 1 μg/L, intraday and interday relative standard deviations of 4.0 and 6.0%. This method was successfully applied in determination of nitrite from three environmental water and two biological samples with the recovery in the range of 90.5–115.2%. In addition, these results were well agreement with those obtained by the conventional Griess method.  相似文献   

5.
In situ synthesis of a deep eutectic solvent and homogeneous liquid–liquid microextraction performed in a narrow bore tube was developed for efficient extraction of irgaphos 168 and irganox 1010 in doogh and water samples packed in polypropylene packages. First, pH of the aqueous sample solutions containing the analytes is adjusted at 9. Then a hydrogen bond acceptor (choline chloride) and a hydrogen bond donor (oleic acid) are dissolved in the solution and vortexed to obtain a homogeneous solution. The solution is filled into a narrow bore tube, in which its bottom was clogged by a septum. Then hydrochloric acid solution is injected into the solution by a syringe. The tube is placed in an ultrasonic bath. During this step, the droplets of choline chloride:oleic acid deep eutectic solvent are produced. The method indicated high enrichment factor (435 for irgaphos 168 and 488 for irganox 1010), low limits of detection (0.03 and 0.09 ng/mL for irgaphos 168 and irganox 1010, respectively) and quantification (0.13 and 0.29 ng/mL for irgaphos 168 and irganox 1010), good recovery (74 and 83% for irgaphos 168 and irganox 1010, respectively), and satisfactory repeatabilities (relative standard deviations ≤12%) can be obtained using the developed method.  相似文献   

6.
《Analytical letters》2012,45(2):262-272
Abstract

Hydrophobic deep eutectic solvents (DESs) were synthesized and developed for the preconcentration of three chlorophenols from wastewater by dispersive liquid–liquid microextraction (DLLME). The analyte concentrations were determined by high-performance liquid chromatography (HPLC). The hydrophobic DESs were prepared with the combination of hydrogen bond donors of decanoic acid or octanoic acid with different hydrogen bond acceptors of quaternary ammonium salts of tetrabutylammonium chloride, tetraoctylammonium chloride, methyltrioctylammonium chloride, and tetraheptylammonium chloride). Following the study of the stability and characterization by Fourier transform infrared spectroscopy, the hydrophobic DESs were developed as extractants and employed for the removal of 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) from wastewater. Using hydrophobic DESs as the microextraction solvents, several key parameters were optimized, including the type and volume of the hydrophobic DES, pH, and time of the extraction procedure. Under the optimized conditions, good recoveries from 90.8% to 93.0% were obtained for the three chlorophenols. The limits of detection were less than 0.05?µg/mL with relative standard deviations between 1.8% and 3.1%. The method was applied for the isolation and determination of synthetic chlorophenols in wastewater.  相似文献   

7.
In the present study, a new method for extraction and preconcentration of amoxicillin and ceftriaxone was used in hospitalised sewage samples, called vortex-assisted liquid-phase microextraction based on the solidification of deep eutectic solvent. Samples were analysed by high-performance liquid chromatography–ultraviolet detection after preparation and extraction. In this method, the new deep eutectic solvent is used as the extraction solvent, which is obtained from the combination of 1-decyl-3-methylimidazolium chloride and n-butanoic acid. The important advantages of this novel extraction solvent include material stability, low density and good freezing point near room temperature. Under the optimum conditions, enrichment factors are in the range of 164–172. Repeatability and reproducibility of the method based on seven replicate measurements of 50.0 µg L?1 of the target analytes in analysed samples were in the range of 2.1–3.5% and 3.8–5.2%, respectively. The limit of detections and linearity are in the range of 0.005–0.10 and 3–600 µg L?1, respectively. The method was successfully applied for the determination of amoxicillin and ceftriaxone in the real sewage samples. The relative recoveries of sewage samples spiked with amoxicillin and ceftriaxone are 91–107%.  相似文献   

8.
A homogeneous liquid‐liquid extraction performed in narrow tube coupled to in–syringe‐dispersive liquid‐liquid microextraction based on deep eutectic solvent has been developed for the extraction of six herbicides from tea samples. In this method, sodium chloride as a separation agent is filled into the narrow tube and the tea sample is placed on top of the salt. Then a mixture of deionized water and deep eutectic solvent (water miscible) is passed through the tube. In this procedure, the deep eutectic solvent is realized as tiny droplets in contact with salt. By passing the droplets from the tea layer placed on the salt layer, the analytes are extracted into them. After collecting the solvent as separated layer, it is mixed with another deep eutectic solvent (choline chloride/butyric acid) and the mixture is dispersed into deionized water placed in a syringe. After adding acetonitrile to break up the cloudy state, the collected organic phase is injected into gas chromatography‐mass spectrometry. Under optimal conditions, limits of detection and quantification in the ranges of 2.6–8.4 and 9.7–29 ng/kg, respectively, were obtained. The extraction recoveries and enrichment factors in the ranges of 70–89% and 350–445 were obtained, respectively.  相似文献   

9.
This study reports a deep eutectic solvent based dispersive liquid-liquid microextraction (DES-DLLME) to extract aromatic amines (4-chloroaniline, 3-nitroaniline, 2-naphtylamine) in environmental water samples before their HPLC-UV determination. The hydrophobic deep eutectic solvent (DES) was prepared by mixing bis(2-ethylhexyl) phosphate (BEHP) as a hydrogen bond acceptor and phenol as a hydrogen bond donor. Affecting factors on the extraction of the aromatic amines were investigated and optimized. Optimum conditions were: DES type: BHHP-Ph ratio: 1 to 2; pH of solution: 8.0; DES volume: 80 µL, salt amount: 10% (w/v). Under optimum conditions, the developed method showed a wide linear range of 0.2–200 µg L?1 (R2 ≥ 0.99) with satisfactory recoveries (≥90.0%). The limit of detections (LODs) and limit of quantifications (LOQs) were in the range of 0.07–0.17 µg L?1 and 0.2–0.5 µg L?1, respectively. The enrichment factors were 170, 180 and 190 for 4-chloroaninile, 3-nitroaniline, 2-naphtylamine, respectively. Based on obtained results, the proposed method is straightforward, efficient, sensitive, and eco-friendly for the extracting and determining of the aromatic amines in environmental water samples.  相似文献   

10.
A deep eutectic solvent (DES) of choline chloride and thiourea was synthesised, immobilised on the surface of graphene oxide (GO) nanosheets and reinforced inside the pores of the hollow fibre (DES-GO-HF). Then, solid-phase microextraction flame atomic absorption spectrometry was designed for separation, preconcentration and determination of trace amounts of silver. Various parameters affecting the extraction recovery of the analyte, such as pH, sample volume, type of DES, extraction time, length of the hollow fiber, nature, as well as the volume and concentration of the eluent, were investigated and optimised. Under optimum conditions, the method showed good linearity in the concentration range of 1.0–40.0 µg L?1 with the determination coefficient of (r2) 0.9990 for silver. The method was very sensitive and has limits of detection and quantification (defined as 3Sb/m and 10Sb/m) of 0.2 and 0.7 µg L?1, respectively. The method was successfully applied for the determination of Ag(I) in water, wastewater, ore and hair samples. The accuracy of the method was evaluated through the recovery experiments and the analysis of certified reference materials.  相似文献   

11.
A green and efficient sample preparation method using a deep eutectic solvent‐based ultrasounds‐assisted dispersive liquid–liquid microextraction with solidification of the aqueous phase followed by high performance liquid chromatography analysis was developed for preconcentration and determination of heavy metals in environmental samples. In the proposed method, a novel, low density deep eutectic solvent was prepared by mixing trihexyl(tetradecyl)phosphonium chloride and thiosalicylic acid at a molar ratio of 1:2 and used both as an extractant and complexing agent. Ultrasound was used to disperse the extractant in the aqueous phase of the sample. Then, the phases were separated by centrifugation, after which the aqueous phase was frozen and the surface extractant phase was dissolved in a small volume of acetonitrile and subjected to liquid chromatographic analysis. The proposed method provided precisions (relative standard deviation, n = 5) in the range of 2.6–4.7%. The limit of detection were 0.05, 0.13, 0.06, and 0.11 µg/L for Pb(II), Cd(II), Co(II), Ni(II), respectively. The enhancement factors were equal to 154, 159, 162, and 158 for lead(II), cadmium(II), cobalt(II), and nickel(II), respectively. The accuracy of the proposed method was evaluated using certified reference materials (CA011b – hard drinking water, NIST 1643e – trace elements in water, TMRAIN‐04 – simulated rain sample).  相似文献   

12.
Green and enhanced extraction of bioactive ingredients from medicinal plants has become a hot research field, and deep eutectic solvents have been considered as a novel kind of sustainable solvents in the extraction process. In this study, hydrogen bond acceptor (choline chloride, etc.) and hydrogen bond donor (l ‐malic acid, etc.) were used to prepare different kinds of deep eutectic solvents to extract coumarins from Cortex Fraxini. The extraction conditions, including the composition and moisture content of deep eutectic solvents, extraction time, and liquid‐solid ratio, were systematically optimized basing on the extraction yield of coumarins. To further investigate the extraction mechanism, Fourier transform infrared spectroscopy was performed, and the microstructures of Cortex Fraxini powders were observed before and after extraction using scanning electron microscope. Results showed that the novel ultrasound‐assisted extraction with conditions of deep eutectic solvent containing betaine/glycerin (1:3), aqueous solution (20%), solid‐liquid ratio (15 mg/mL), and extraction time (30 min) exhibited the best extraction yields for the four target coumarins and much better extraction efficiency than with conventional solvent extractions. This suggests that the new ultrasound‐assisted deep eutectic solvent extraction could be used as a green and high‐efficient approach for extraction of the main coumarins from Cortex Fraxini.  相似文献   

13.
Three types of choline chloride based deep eutectic solvents were prepared and used to modify magnetic chitosan. The adsorption capacity of the three deep‐eutectic‐solvent‐modified magnetic chitosan/carboxymethyl‐β‐cyclodextrin for removing methyl orange from wastewater was examined. The different deep eutectic solvents were used to strengthen the adsorption capacity of magnetic chitosan. Deep‐eutectic‐solvent‐modified magnetic chitosan/carboxymethyl‐β‐cyclodextrin materials were characterized by Fourier transform infrared spectroscopy and Brunauer–Emmett–Teller surface area measurements. Among the three deep eutectic solvents, choline chloride/glycerol (1:2) modified magnetic chitosan/carboxymethyl‐β‐cyclodextrin showed the highest adsorption capacity to methyl orange. Therefore, choline chloride/glycerol (1:3, 1:4, 1:5, 1:6) deep eutectic solvents were prepared for the assay, and choline chloride/glycerol‐modified magnetic chitosan/carboxymethyl‐β‐cyclodextrin prepared with choline chloride/glycerol (1:3) (volume: 40 μg, contact time: 30 min, and pH: 6) had the best adsorption capacity over the concentration range of 10–200 μg/mL.  相似文献   

14.
Ab initio molecular dynamic simulations reveal significantly reduced ion charges in several choline‐based deep eutectic solvents, which are cheap and eco‐friendly alternatives to ionic liquids. Increasing hydrogen bond strength between the anion and the organic compound enhances charge spreading from the anion to the organic compound while the positive charge is stronger located at the cation. Nonetheless, the negative charge transferred from chloride to urea in choline chloride urea mixtures is negligible. Thus, it seems questionable if charge delocalization occurring through hydrogen bonding between the halide anion and the organic compound is responsible for the deep eutectic melting point.  相似文献   

15.
A green, efficient, simple and sensitive pre‐concentration method has been developed for the determination of vanadium(V) in foodstuffs using deep eutectic solvent–ultrasonic‐assisted dispersive liquid–liquid microextraction. In the developed procedure, the extraction of vanadium(V) was achieved using 2‐hydroxy‐3‐methoxybenzaldehyde thiosemicarbazone as a chelating agent, choline chloride–phenol as extracting solvent and tetrahydrofuran as dispersive solvent. Vanadium(V) concentration was measured using electrothermal atomic absorption spectrometry. Various analytical parameters including pH, type and molar ratio of deep eutectic solvent, ultrasonication time and amount of ligand were studied. A multivariate study was carried out for optimization of the variables. The pre‐concentration factor was calculated as 50. Under optimal conditions, limit of detection, limit of quantification and relative standard deviation were calculated as 0.025 μg l?1, 0.175 μg l?1 and 3.4%, respectively. The accuracy of the procedure was confirmed using certified reference materials and standard addition method. The obtained results confirm adequate recoveries for vanadium(V) (>96%). This technique was fruitfully applied for determination of vanadium in foodstuffs.  相似文献   

16.
A simple, environmentally benign, and rapid method based on temperature‐controlled liquid–liquid microextraction using a deep eutectic solvent was developed for the simultaneous extraction/preconcentration of diazinon and fenitrothion. The method involved the addition of deep eutectic solvent to the aqueous sample followed by heating the mixture in a 75°C water bath until the solvent was completely dissolved in the aqueous phase. Then, the resultant solution was cooled in an ice bath and a cloudy solution was formed. Afterward, the mixture was centrifuged and the enriched deep eutectic solvent phase was analyzed by high‐performance liquid chromatography with ultraviolet detection for quantification of the analytes. The factors affecting the extraction efficiency were optimized. Under the optimized extraction conditions, the limits of detection for diazinon and fenitrothion were 0.3 and 0.15 μg/L, respectively. The calibration curves for diazinon and fenitrothion exhibited linearity in the concentration range of 1–100 and 0.5–100 μg/L, respectively. The relative standard deviations for five replicate measurements at 10.0 μg/L level of analytes were less than 2.8 and 4.5% for intra‐ and interday assays, respectively. The developed method was successfully applied to the determination of diazinon and fenitrothion in water and fruit juice samples.  相似文献   

17.
Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl‐ menthol‐based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air‐assisted dispersive liquid–liquid microextraction method for preconcentration and extraction of benzophenone‐type UV filters from aqueous samples followed by high‐performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl‐ menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high‐performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone‐type filters in environmental water samples with relative recoveries of 88.8–105.9%.  相似文献   

18.
In this study, a gas‐assisted dispersive liquid‐phase microextraction method using a deep eutectic solvent as the extraction solvent combined with gas chromatography and flame ionization detection was developed for the extraction and determination of some pesticide residues in vegetable and fruit juice samples. In this method, choline chloride and 4‐chlorophenol at a molar ratio of 1:2 were mixed. By heating and vortexing, a clear, water‐immiscible, and homogeneous liquid was formed. The obtained deep eutectic solvent was added to an aqueous solution of the analytes in a conical test tube. Air was bubbled into the aqueous solution and a cloudy solution was obtained. During this step, the analytes were extracted into the fine droplets of the extraction solvent. After centrifugation, an aliquot of the settled phase was injected into the separation system. Under the optimum extraction conditions, enrichment factors, and extraction recoveries were obtained in the ranges of 247–355 and 49–71%, respectively. The obtained values for the limits of detection and quantification were in the ranges of 0.24–1.4 and 0.71–4.2 μg/L, respectively. The proposed method is simple, fast, efficient, and inexpensive.  相似文献   

19.
针对废旧锂离子电池(LIBs)回收过程中产生的二次污染及高能耗等问题, 提出了一种绿色高效浸出废旧LIBs正极材料中有价金属的新方法. 以氯化胆碱和不同的氢键供体(草酸、 丙二酸、 戊二酸和苯磺酸)为原料, 合成了氯化胆碱/酸二元低共熔溶剂(DES)、 氯化胆碱/酸/水和氯化胆碱/酸/乙醇等三元DES. 通过傅里叶变换红外光谱(FTIR)和核磁共振波谱(NMR)表征了氯化胆碱和酸之间氢键的形成过程, 探究了DES中羧酸的烷基链长、 酸性大小以及添加水和乙醇组分对浸出废旧LiCoO2正极材料的影响. 研究结果表明, 羧酸烷基链长的增加会使DES的浸出能力下降; 酸的酸性大小不能作为溶解金属氧化物能力强弱的主要依据; 加入等摩尔量的水对DES的浸出效率影响较小, 而等摩尔量加入无水乙醇会影响DES的氢键结构, 对浸出结果影响较大. 筛选出氯化胆碱/苯磺酸/乙醇DES作为废旧LiCoO2绿色高效的浸出剂, Li和Co的浸出效率分别高达98.6%和95.2%.  相似文献   

20.
《Analytical letters》2012,45(17):2754-2772
A simple, rapid, efficient, and environmentally friendly method was developed for the preconcentration of atrazine, simazine, diuron, bentazone, tebuconazole, and fipronil from water. Dispersive liquid–liquid microextraction was employed with determination by liquid chromatography–tandem mass spectrometry. The volumes of extraction and disperser solvents, the concentration of sodium chloride, and the pH were optimized by response surface methodology. The optimum conditions involved the use of 150 µL of 1:1 (v/v) monochlorobenzene:dichlorobenzene as the extraction solvent, 2 mL acetonitrile as the disperser solvent, and 10 mL of sample at pH 3.0. The accuracy was evaluated in terms of recovery values that were from 54 to 112%. The relative standard deviations ranged from 4 to 27%. The limits of quantification were between 0.005 and 0.05 µg L?1. The optimized method had low matrix effects for the analytes and the results demonstrated application for the determination of pesticides in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号