首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《中国化学快报》2021,32(8):2443-2447
We herein report a new lanthanide metal-organic framework (MOF) that exhibits excellent chemical stability, especially in the aqueous solution over a wide pH range from 1 to 14. In contrast to many reported lanthanide MOFs, this Tb-based MOF emits cyan fluorescence inherited from the integrated AIE-active ligand, rather than Ln3+ ions. More remarkably, its fluorescence signal features a highly selective and sensitive “turn-off” response toward CrO42−, Cr2O72− and Fe3+ ions, highlighted with the low detection limits down to 68.18, 69.85 and 138.8 ppm, respectively. Thus, the exceptional structural stability and sensing performance render this material able to be a superior luminescent sensor for heavy metal ions in wastewater.  相似文献   

2.
UiO-66-NH2-IM, a fluorescent metal-organic framework (MOF), was synthesized by post-synthetic modification of UiO-66-NH2 with 2-imidazole carboxaldehyde via a Schiff base reaction. It was examined using various characterization techniques (PXRD, FTIR, NMR, SEM, TGA, UV-Vis DRS, and photoluminescence spectroscopy). The emissive feature of UiO-66-NH2-IM was utilized to detect volatile organic compounds (VOCs), metal ions, and anions, such as acetone, Fe3+, and carbonate (CO32−). Acetone turns off the high luminescence of UiO-66-NH2-IM in DMSO, with the limit of detection (LOD) being 3.6 ppm. Similarly, Fe3+ in an aqueous medium is detected at LOD=0.67 μM (0.04 ppm) via quenching. On the contrary, CO32− in an aqueous medium significantly enhances the luminescence of UiO-66-NH2-IM, which is detected with extremely high sensitivity (LOD=1.16 μM, i. e., 0.07 ppm). Large Stern-Volmer constant, Ksv, and low LOD values indicate excellent sensitivity of the post-synthetic MOF. Experimental data supported by density functional theory (DFT) calculations discern photo-induced electron transfer (PET), resonance energy transfer (RET), inner filter effect (IFE), or proton abstraction as putative sensing mechanisms. NMR and computational studies propose a proton abstraction mechanism for luminescence enhancement with CO32−. Moreover, the optical behavior of the post-synthetic material toward analytes is recyclable.  相似文献   

3.
A highly sensitive and selective potentiometric and voltammteric assay for the detection of Fe3+ using (E)‐3‐((2‐(2‐(2‐aminoethylamino) ethylamino) ethylimino)methyl)‐4H‐chromen‐4‐one (IFE(III)) ionophore was developed. To demonstrate the ion‐to‐electron transfer ability of MWCNT, these were incorporated in the ion‐selective membrane and response characteristics of Fe3+ electrode was compared with those of the traditional ion selective electrode. The electrode showed an improved Nernstian slope, lower detection limit, response time of less than 5 s and working in a pH range of 3.0 to 8.0. Differential pulse voltammetric studies were performed for IFE(III)‐Fe3+ complex in DMSO solvent medium at glassy carbon (GC) electrode. A linear relationship between the cathodic peak current and concentration of Fe3+ was observed in the range of 1.6×10?5 to 4.4×10?5 mol/L with a detection limit of 5.2×10?8 mol/L. The electrode shows remarkable selectivity for Fe3+ ions over alkali, alkaline earth, transition and heavy metal ions. The optimized electrode was successfully applied for the determination of Fe3+ ion in different real‐life samples using potentiometric technique. Theoretical calculations were used to support the complexation behavior of Fe3+ with IFE(III).  相似文献   

4.
Effective detection of organic/inorganic pollutants, such as antibiotics, nitro‐compounds, excessive Fe3+ and MnO4?, is crucial for human health and environmental protection. Here, a new terbium(III)–organic framework, namely [Tb(TATAB)(H2O)]?2H2O ( Tb‐MOF , H3TATAB=4,4′,4′′‐s‐triazine‐1,3,5‐triyltri‐m‐aminobenzoic acid), was assembled and characterized. The Tb‐MOF exhibits a water‐stable 3D bnn framework. Due to the existence of competitive absorption, Tb‐MOF has a high selectivity for detecting Fe3+, MnO4?, 4‐nirophenol and nitroimidazole (ronidazole, metronidazole, dimetridazole, ornidazole) in aqueous through luminescent quenching. The results suggest that Tb‐MOF is a simple and reliable reagent with multiple sensor responses in practical applications. To the best of our knowledge, this work represents the first TbIII‐based MOF as an efficient fluorescent sensor for detecting metal ions, inorganic anions, nitro‐compounds, and antibiotics simultaneously.  相似文献   

5.
A water‐stable luminescent terbium‐based metal–organic framework (MOF), {[Tb(L1)1.5(H2O)] ? 3 H2O}n (Tb‐MOF), with rod‐shaped secondary building units (SBUs) and honeycomb‐type tubular channels has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. The high green emission intensity and the microporous nature of the Tb‐MOF indicate that it can potentially be used as a luminescent sensor. In this work, we show that Tb‐MOF can selectively sense Fe3+ and Al3+ ions from mixed metal ions in water through different detection mechanisms. In addition, it also exhibits high sensitivity for 2,4,6‐trinitrophenol (TNP) in the presence of other nitro aromatic compounds in aqueous solution by luminescence quenching experiments.  相似文献   

6.
Metal oxo clusters and metal oxides assemble and precipitate from water in processes that depend on pH, temperature, and concentration. Other parameters that influence the structure, composition, and nuclearity of “molecular” and bulk metal oxides are poorly understood, and have thus not been exploited. Herein, we show that Bi3+ drives the formation of aqueous Fe3+ clusters, usurping the role of pH. We isolated and structurally characterized a Bi/Fe cluster, Fe3BiO2(CCl3COO)8(THF)(H2O)2, and demonstrated its conversion into an iron Keggin ion capped by six Bi3+ irons ( Bi6Fe13 ). The reaction pathway was documented by X‐ray scattering and mass spectrometry. Opposing the expected trend, increased cluster nuclearity required a pH decrease instead of a pH increase. We attribute this anomalous behavior of Bi/Fe(aq) solutions to Bi3+, which drives hydrolysis and condensation. Likewise, Bi3+ stabilizes metal oxo clusters and metal oxides in strongly acidic conditions, which is important in applications such as water oxidation for energy storage.  相似文献   

7.
With the rapid development of economy, industrial and agricultural pollutants have caused great damage to the ecological environment and the normal development of organisms, posing a serious threat to global public health. Therefore, rapid and sensitive detection of pollutants is very important for environmental safety and people’s health. A stable multi-response fluorescence sensor(RhB@1) with dual emission characteristics was constructed by embedding Rh B guest molecules in Zn-MOF using a simp...  相似文献   

8.
The synthesis of a novel, and highly selective Fe3+ ion sensor based on anthrone-spirolactam and its quinoline hybrid ligand is reported. The designed ligand displayed selective detection of Fe3+ ions with enhanced fluorescence emission. The complexation of Fe3+ ion led to a red shift of 32 nm from 420 nm to 452 nm, and a several fold increase in intensity with fluorescent green emission. The complexation (detection) of Fe3+ ions with ligand resulted in chelation enhanced fluorescence and intramolecular charge transfer through the inhibition of C=N isomerization. This hybrid sensor shows high sensitivity and selectivity, spontaneous response, and works on a wide pH range a minimum detection limit of 6.83 × 10−8 M. Importantly, the sensor works through the fluorescence turn-on mechanism that overcomes the paramagnetic effect of Fe3+ ions. The binding mechanism between the ligand and the Fe3+ ions was established from the Job's plot method, optical studies, Fourier transfor infrared spectroscopy, NMR titration, fluorescence life-time studies, and density functional theory optimization. The sensor displayed excellent results in the quantification of Fe3+ ions from real water samples. Furthermore, due to its biocompatibility nature, fluorescent spotting of Fe3+ ions in live cells revealed its bioimaging applications.  相似文献   

9.
A novel metal–organic framework (MOF) was fabricated by spontaneous K+‐induced supramolecular self‐assembly with the embedded tripodal ligand units. When the 3D ligand was loaded onto Fe3O4@mSiO2 core‐shell nanoparticles, it could effectively separate K+ ions from a mixture of Na+, K+, Mg2+, and Ca2+ ions through nanoparticle‐assisted MOF crystallization into a Fe3O4@mSiO2@MOF hybrid material. Excess potassium ions could be extracted because of the specific cation–π interaction between K+ and the aromatic cavity of the MOF, leading to enhanced separation efficiency and suggesting a new application for MOFs.  相似文献   

10.
By introducing carboxyl tag to the aromatic ligands system and borrowing the organic template open framework idea, a stable fluorescent Zn metal–organic framework was successfully prepared through a rigid ligand H6L (3,5‐bis‐(3‐carboxyphenoxy)benzoic acid) under hydrothermal conditions. The selectivity and sensitivity of the Zn‐MOF to metal ions and nitro‐aromatic compounds (NACs) were investigated by fluorescence quenching. And the Zn‐MOF showed a high sensibility of nitro‐aromatic compounds (NACs) and Fe3+ ions, especially for 4‐(4‐nitropheny lazo) resorcinol (NPLR). More importantly, the detection limit of the Zn‐MOF for detecting NPLR solution was found to be 1.71 ppb. Moreover, this sensor is remarkable recyclable and is promisingly applied for rapid, on‐site and sensing of explosive residuals.  相似文献   

11.
The Fe3+ ion is the most important element in environmental systems and plays a fundamental role in biological processes. Iron deficiency can result in diseases and highly selective and sensitive detection of trace Fe3+ has become a hot topic. A novel two‐dimensional ZnII coordination framework, poly[[μ‐4,4′‐bis(2‐methylimidazol‐1‐yl)diphenyl ether‐κ2N3:N3′](μ‐4,4′‐sulfonyldibenzoato‐κ2O:O′)zinc(II)], [Zn(C14H8O6S)(C20H18N4O)]n or [Zn(SDBA)(BMIOPE)]n, (I), where H2SDBA is 4,4′‐sulfonyldibenzoic acid and BMIOPE is 4,4′‐bis(2‐methylimidazol‐1‐yl)diphenyl ether, has been prepared and characterized by IR, elemental analysis, thermal analysis and X‐ray diffraction analysis, the latter showing that the coordination polymer exhibits a threefold interpenetrating two‐dimensional 44‐ sql network. In addition, it displays a highly selective and sensitive sensing for Fe3+ ions in aqueous solution.  相似文献   

12.
A conjugated polymer (PPETE-RB) with poly[p-(phenylene ethynylene)-alt-(thienylene-ethynylene)] (PPETE) as the backbone with pendant rhodamine B (RB) groups in the close-ring spirolactam form was synthesized. With long spacer between backbone and pedant groups as well as long solubilizing side chains, the polymer possesses good solubility in most organic solvents and relatively large molecular weight. The fluorescence of the conjugated polymer in THF exhibited selective dual responses upon adding Fe3+/Fe2+ but negligible response upon other cations. The emission around 481 nm (excited at 360 nm) decreased and that around 571 nm (excited at 520 nm) emerged and increased when increasing the concentration of iron ions. The responses to Fe3+ and Fe2+ are very similar. The limits of detection were found to fall in between 6 μM and 8 μM. The mechanism study showed that the quenching around 481 nm was due to the inner filter effect (IFE) between the Fe3+/Fe2+ and PPETE-RB; while that enhancement around 571 nm could be attributed to the formation of fluorescent ring-open structure from nonfluorescent spirolactam of pedant RB group upon Fe3+/Fe2+. Such dual and opposite responses provided more reliable information than single response for sensing applications.  相似文献   

13.
Newly designed and synthesised chemosensor 1 selectively recognises Fe3+ ions in CHCl3–MeOH (1:1, v/v) by showing ratiometric change in emission and green colouration of the solution under the exposure of UV light. The ensemble 1·Fe3+ selectively detects F ions over other halides and the phenomenon is useful to construct combinatorial logic gate. Furthermore, the probe 1 can be used for in vitro detection of Fe3+ in human cervical cancer (HeLa) cells.  相似文献   

14.
A Tb3+ based coordination polymer (NKU-115) with free N sites was successfully constructed, featuring strong green light emission and selective quenching response toward Fe3+ in aqueous solution.  相似文献   

15.
A fluorescent “turn‐on” probe for Fe3+ was investigated in an aqueous system based on a boron 2‐(2′‐pyridyl) imidazole complex (BOPIM‐dma). BOPIM‐dma shows weak or no fluorescence in polar solvents due to twisted intramolecular charge transfer, but the addition of Fe3+ to BOPIM‐dma leads to fluorescence switch‐on responses. The binding is highly selective to Fe3+ over other metal ions, indicating that BOPIM‐dma is a chemodosimeter for Fe3+. Furthermore, the existence of S2O32− could much enhance and stabilize the emission significantly, indicating that the BOPIM‐dma/Fe3+/S2O32− complexes are a strong fluorescence system, and can be used as a sensitive detector for Fe3+, with the limit of detection of 6.0 × 10−7 mol L−1.  相似文献   

16.
An efficient colorimetric and fluorescent chemodosimeter for Fe3+ ions has been developed. The visual and fluorescent behaviors of the receptor toward various metal ions were investigated. The receptor shows exclusive response toward Fe3+ ions and also distinguishes Fe3+ from other cations by color change and unusual fluorescence enhancement in aqueous solution (DMSO/H2O = 4/1, v/v). Thus, the receptor can be used as a colorimetric and fluorescent sensor for the determination of Fe3+ ion. The visual color detection limit and the fluorescence detection limit of the receptor towards Fe3+ are (1.42 ± 0.01) × 10‐6 M and (7.57 ± 0.04) × 10‐8 M, respectively. The fluorescence microscopy experiments showed that the receptor is efficient for detection of Fe3+ in vitro, developing a good image of the biological organelles. The sensing mechanism is proven to be a hydrolysis process  相似文献   

17.
The trivalent metal cations Al3+, Cr3+, and Fe3+ were each introduced, together with Sc3+, into MIL‐100(Sc,M) solid solutions (M=Al, Cr, Fe) by direct synthesis. The substitution has been confirmed by powder X‐ray diffraction (PXRD) and solid‐state NMR, UV/Vis, and X‐ray absorption (XAS) spectroscopy. Mixed Sc/Fe MIL‐100 samples were prepared in which part of the Fe is present as α‐Fe2O3 nanoparticles within the mesoporous cages of the MOF, as shown by XAS, TGA, and PXRD. The catalytic activity of the mixed‐metal catalysts in Lewis acid catalysed Friedel–Crafts additions increases with the amount of Sc present, with the attenuating effect of the second metal decreasing in the order Al>Fe>Cr. Mixed‐metal Sc,Fe materials give acceptable activity: 40 % Fe incorporation only results in a 20 % decrease in activity over the same reaction time and pure product can still be obtained and filtered off after extended reaction times. Supported α‐Fe2O3 nanoparticles were also active Lewis acid species, although less active than Sc3+ in trimer sites. The incorporation of Fe3+ into MIL‐100(Sc) imparts activity for oxidation catalysis and tandem catalytic processes (Lewis acid+oxidation) that make use of both catalytically active framework Sc3+ and Fe3+. A procedure for using these mixed‐metal heterogeneous catalysts has been developed for making ketones from (hetero)aromatics and a hemiacetal.  相似文献   

18.
In this paper, a novel lanthanum metal–organic framework La‐MOF was prepared via hydrothermal and reflux methods. The La‐MOF was achieved through the reaction of a 5‐amino‐isophthalic acid with 1, 2‐phenylenediamine and lanthanum chloride. The prepared La‐MOF structure was confirmed by XRD, mass spectrometry, IR, UV–Vis and elemental analysis, whereas the size, and morphology was examined by FE‐SEM/EDX and HR‐TEM. The results indicated that the La‐MOF prepared via both methods have the same structure and composition. Meanwhile, the MOF yield, reaction time, morphology, physiochemical and sensing properties were highly depended on the used preparation method. The photoluminescence (PL) study was carried out for the La‐MOF, and the results showed that La‐MOF exhibits strong emission at 558 nm after excitation at 369 nm. Moreover, the PL data indicating that the La‐MOF has highly selective sensing properties for iron (III) competing with different metal ions. The Stern‐Völmer graph shows a linear calibration curve which achieved over a concentration range 1.0–500 μM of Fe3+ with a correlation coefficient, detection, and quantitation limits 0.998, 1.35 μM and 4.08 μM, respectively. According to the remarkable quenching of the PL intensity of La‐MOF using various concentrations of Fe3+, it was successfully used as a sensor for Fe3+detecting in different water resources (pure and waste) samples. The quenching mechanism was studied and it has a dynamic type and due to efficient energy transfer between the La‐MOF and Fe3+.  相似文献   

19.
A novel norlfoxacin-containing fluorescent polymer was synthesized via copolymerization of two derivatives of norfloxacin and methylmetacrylate (MMA). It could emit blue fluorescence in both the solution and film states. Fluorescence characteristics of the polymer as a function of pH were investigated in aqueous solution. The polymer solution showed weaker fluorescence between pH 5-9. When the pH of the solution was higher than 9 or lower than 5, stronger fluorescence could be seen. Responses of metal cations (Mn2 +, Fe3 +, Co2 +, Ni2 +, Cu2 + and Zn2 +) to the fluorescence intensity of this polymer were obtained that only Fe3 + could quench efficiently the fluorescence intensity of the polymer in solution and film state. The results suggested the possibility that this newly synthesized compound might work as a polymeric sensor responding to water polluted by protons and Fe3 +.  相似文献   

20.
A new turn on fluorescent probe for ferric ion based on poly(m‐phenyleneethynylene salicylaldimine) ( PPE‐IM ) has been developed. The preparation of PPE‐IM involves post‐polymerization functionalization of the corresponding polymeric amine, PPE‐AM , via the condensation with salicylaldehyde. The degree of polymerization of both PPE‐IM and PPE‐IM is 17 with polydispersity index of 1.5. In aqueous solution, the polymeric PPE‐IM is highly stable unlike its small molecule analog which is gradually hydrolyzed. The weak fluorescence of initial PPE ‐ IM (λem = 470) is greatly enhanced by 300 folds upon the addition of Fe3+. The 1H NMR reveals that the fluorescence enhancement is caused by Fe3+‐induced hydrolysis of the imine group. The sensing system shows a detection limit of 0.14 μM of Fe3+. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1155–1161  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号