首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By introducing carboxyl tag to the aromatic ligands system and borrowing the organic template open framework idea, a stable fluorescent Zn metal–organic framework was successfully prepared through a rigid ligand H6L (3,5‐bis‐(3‐carboxyphenoxy)benzoic acid) under hydrothermal conditions. The selectivity and sensitivity of the Zn‐MOF to metal ions and nitro‐aromatic compounds (NACs) were investigated by fluorescence quenching. And the Zn‐MOF showed a high sensibility of nitro‐aromatic compounds (NACs) and Fe3+ ions, especially for 4‐(4‐nitropheny lazo) resorcinol (NPLR). More importantly, the detection limit of the Zn‐MOF for detecting NPLR solution was found to be 1.71 ppb. Moreover, this sensor is remarkable recyclable and is promisingly applied for rapid, on‐site and sensing of explosive residuals.  相似文献   

2.
A copper metal–organic framework nanoparticles (Cu‐MOF‐NPs) synthesized via simple technique. The prepared Cu‐MOF‐NPs nanoparticles were further characterized using 1H‐NMR, FE‐SEM/EDX and thermal study (DSC/TGA). The FE‐SEM/EDX, thermal analysis, and NMR spectrum data with the other analysis support the nano‐Cu‐MOF structure and the monomeric unit (n[Cu (AIP)2(APY)(H2O)2].4H2O) of Cu‐MOF‐NPs. The photoluminescence (PL) studies of triiodothyronine hormone (T3) based on the prepared Cu‐MOF‐NPs investigated. The results revealed that the Cu‐MOF‐NPs might be used as a biosensor in the determination of triiodothyronine hormone (T3) in biological fluids through a significant quenching of the photoluminescence intensity of Cu‐MOF‐NPs at excitation wavelength 492 nm. The calibration plot achieved over the concentration range 0.0–200.0 ng/dL T3 hormone with a correlation coefficient 0.996 and limit of detection (LOD) and quantification (LOQ) 0.198 and 0.60 ng/dL, respectively. The PL spectra are indicating that Cu‐MOF‐NPs has highly selective sensing properties for T3 hormone without interfering with other human many hormones types. This approach considered a promising analytical tool for early diagnosis of the cases of thyroid disease. The mechanism of quenching between the Cu‐MOF‐NPs, and T3 hormone studied. The mechanism was a dynamic type and obtained due to the energy transfer mechanism.  相似文献   

3.
A new HfIV‐based metal‐organic framework with UiO‐66 topology was synthesized via a one‐step solvothermal method by using 3‐methyl‐4‐phenylthieno[2,3‐b]thiophene‐2,5‐dicarboxylic acid (H2MPTDC) as a ligand. The MOF material showed a high stability in a broad pH range (from pH 2 to pH 12) in an aqueous medium. The presence of hydrophobic methyl and phenyl substituents in the carboxylic acid ligand and strong Hf?O bond play crucial roles in its stability. The new MOF material was systematically characterized by various techniques such as XRPD, N2 sorption, thermogravimetric analyses and FT‐IR spectroscopy. The photophysical properties of the MOF material were also examined by steady‐state and time‐resolved fluorescence studies. It was observed that the blue fluorescence of the MOF material was selectively quenched in the presence of Fe3+ ion in pure aqueous medium. A mechanistic study disclosed that quenching occurs via a strong inner filter effect (IFE) arising from Fe3+ ion in aqueous medium. Interestingly, the fluorescence of the MOF material can be recovered by elimination of the IFE of Fe3+ ion via reduction of Fe3+ ion by ascorbic acid (AA). Based on the fluorescence recovery by AA, a MOF based on‐off‐on probe was developed for the sensing of Fe3+ ion and AA in aqueous medium. Inspired by this reversible sensing event, we demonstrate basic (NOT, OR, YES, INHIBIT and IMP) and higher integrated logic operations utilizing this fluorescent MOF. This MOF‐based logic systems could be potentially used for next‐generation logic‐gate based analytical applications as well as for the detection and discrimination of targeted molecules in various complex domains.  相似文献   

4.
The water‐stable 3D lanthanide‐organic framework (Ln‐MOF) {[Eu(bci)(H2O)] · 2H2O}n ( 1 ) [H2bci = bis(2‐carboxyethyl)isocyanurate] was synthesized under hydrothermal conditions. Compound 1 ‐ Eu exhibits a 3D open‐framework connected by Eu–(μ‐O)2–Eu chains and bci ligands. Meanwhile, 1 ‐ Eu exhibits highly efficient luminescent sensing for environmentally relevant Fe3+ and SCN ions through luminescence quenching. These results indicated that it could be utilized as a multi‐responsive luminescence sensor.  相似文献   

5.
A novel luminescent microporous lanthanide metal–organic framework (Ln‐MOF) based on a urea‐containing ligand has been successfully assembled. Structural analysis revealed that the framework features two types of 1D channels, with urea N?H bonds projecting into the pores. Luminescence studies have revealed that the Ln‐MOF exhibits high sensitivity, good selectivity, and a fast luminescence quenching response towards Fe3+, CrVI anions, and picric acid. In particular, in the detection of Cr2O72? and picric acid, the Ln‐MOF can be simply and quickly regenerated, thus exhibiting excellent recyclability. To the best of our knowledge, this is the first example of a multi‐responsive luminescent Ln‐MOF sensor for Fe3+, CrVI anions, and picric acid based on a urea derivative. This Ln‐MOF may potentially be used as a multi‐responsive regenerable luminescent sensor for the quantitative detection of toxic and harmful substances.  相似文献   

6.
A water‐stable luminescent terbium‐based metal–organic framework (MOF), {[Tb(L1)1.5(H2O)] ? 3 H2O}n (Tb‐MOF), with rod‐shaped secondary building units (SBUs) and honeycomb‐type tubular channels has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. The high green emission intensity and the microporous nature of the Tb‐MOF indicate that it can potentially be used as a luminescent sensor. In this work, we show that Tb‐MOF can selectively sense Fe3+ and Al3+ ions from mixed metal ions in water through different detection mechanisms. In addition, it also exhibits high sensitivity for 2,4,6‐trinitrophenol (TNP) in the presence of other nitro aromatic compounds in aqueous solution by luminescence quenching experiments.  相似文献   

7.
《中国化学》2017,35(7):1091-1097
In this work, a new porous Zr‐based metal‐organic framework (MOF ) with a large Brunner‐Emmet‐Teller (BET ) surface area was prepared by the solvothermal method using 4,4’‐(naphthalene‐1,4‐diyl)dibenzoic acid (NDDA ) as the organic ligand, and the luminescent detection performance was studied systematically. The experiments combing with computations indicate that the as‐synthesized material can sensitively and selectively detect nitro explosives and metal ions, especially for 2,4,6‐trinitrophenol (TNP ) and Fe3+, due to the possible electron transfer from inorganic moieties to organic moieties with naphthalene part. Interestingly, owing to its high porosity and large surface area, this Zr‐MOF showed quick luminescent response time (in 1 min) for TNP and Fe3+. The results obtained may provide useful information for the design of MOFs with the large permanent porosity in sensing applications for large molecules in the future.  相似文献   

8.
Effective detection of organic/inorganic pollutants, such as antibiotics, nitro‐compounds, excessive Fe3+ and MnO4?, is crucial for human health and environmental protection. Here, a new terbium(III)–organic framework, namely [Tb(TATAB)(H2O)]?2H2O ( Tb‐MOF , H3TATAB=4,4′,4′′‐s‐triazine‐1,3,5‐triyltri‐m‐aminobenzoic acid), was assembled and characterized. The Tb‐MOF exhibits a water‐stable 3D bnn framework. Due to the existence of competitive absorption, Tb‐MOF has a high selectivity for detecting Fe3+, MnO4?, 4‐nirophenol and nitroimidazole (ronidazole, metronidazole, dimetridazole, ornidazole) in aqueous through luminescent quenching. The results suggest that Tb‐MOF is a simple and reliable reagent with multiple sensor responses in practical applications. To the best of our knowledge, this work represents the first TbIII‐based MOF as an efficient fluorescent sensor for detecting metal ions, inorganic anions, nitro‐compounds, and antibiotics simultaneously.  相似文献   

9.
Single crystals of the FeII metal‐organic framework (MOF) with 1,3,5‐benzenetricarboxylate (BTC) as a linker were solvothermally obtained under air‐free conditions. X‐ray diffraction analysis of the crystals demonstrated a structure for FeII‐MOF analogous to that of [Cu3(BTC)2] (HKUST‐1). Unlike HKUST‐1, however, the FeII‐MOF did not retain permanent porosity after exchange of guest molecules. The Mössbauer spectrum of the FeII‐MOF was recorded at 80 K in zero field yielding an apparent quadrupole splitting of ΔEQ = 2.43 mm · s–1, and an isomer shift of δ = 1.20 mm · s–1, consistent with high‐spin central iron(II) atoms. Air exposure of the FeII‐MOF was found to result in oxidation of the metal atoms to afford FeIII. These results demonstrate that FeII‐based MOFs can be prepared in similar fashion to the [Cu3(BTC)2], but that they lack permanent porosity when degassed.  相似文献   

10.
Highly selective and low‐cost optical nanosensors of organic–inorganic hybrid materials for heavy metal ions detection have been prepared via the functionalization of mesoporous silica (SBA‐16) with chalcone fluorescent chromophores. The successful attachment of organic chalcone moieties and preservation of original structure of SBA‐16 after the anchoring process were confirmed by extensive characterizations using various techniques like Fourier transform infrared and UV–visible spectroscopies, transmission electron microscopy, nitrogen adsorption–desorption isotherms, low‐angle X‐ray diffraction and thermogravimetric analysis. The colorimetric behaviour, selectivity and sensitivity were also investigated. The optical nanosensors respond selectively to heavy metal ions, such as Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+, with observable colour changes in 0.01 M Tris–HCl aqueous buffer solution. Also, the optical sensing ability of the investigated nanosensors to the mentioned metal ions was investigated using steady‐state absorption and emission techniques. Significant increase in the absorption spectra and a static quenching in the emission spectra are observed upon adding various concentrations of the studied metal ions. The spectral changes as well as the observable colour changes suggest that the investigated nanosensors are suitable for simple, economic, online analysis and remote design of these toxic metal ions with fast kinetic responses. Finally, the low detection limits for all the studied metals are in good agreement with those recommended by both the US Environmental Protection Agency and World Health Organization, except for Hg2+ and Cd2+, indicating that the investigated nanosensors have hypersensitivity, selectivity and better recognition for all the studied metal ions.  相似文献   

11.
The trivalent metal cations Al3+, Cr3+, and Fe3+ were each introduced, together with Sc3+, into MIL‐100(Sc,M) solid solutions (M=Al, Cr, Fe) by direct synthesis. The substitution has been confirmed by powder X‐ray diffraction (PXRD) and solid‐state NMR, UV/Vis, and X‐ray absorption (XAS) spectroscopy. Mixed Sc/Fe MIL‐100 samples were prepared in which part of the Fe is present as α‐Fe2O3 nanoparticles within the mesoporous cages of the MOF, as shown by XAS, TGA, and PXRD. The catalytic activity of the mixed‐metal catalysts in Lewis acid catalysed Friedel–Crafts additions increases with the amount of Sc present, with the attenuating effect of the second metal decreasing in the order Al>Fe>Cr. Mixed‐metal Sc,Fe materials give acceptable activity: 40 % Fe incorporation only results in a 20 % decrease in activity over the same reaction time and pure product can still be obtained and filtered off after extended reaction times. Supported α‐Fe2O3 nanoparticles were also active Lewis acid species, although less active than Sc3+ in trimer sites. The incorporation of Fe3+ into MIL‐100(Sc) imparts activity for oxidation catalysis and tandem catalytic processes (Lewis acid+oxidation) that make use of both catalytically active framework Sc3+ and Fe3+. A procedure for using these mixed‐metal heterogeneous catalysts has been developed for making ketones from (hetero)aromatics and a hemiacetal.  相似文献   

12.
《Electroanalysis》2004,16(12):1002-1008
Preliminary theoretical studies revealed the selective complexation of bis (2‐mercaptoanil) diacetyl (BMDA) with La3+ over several alkali, alkaline earth and heavy metal ions. Thus, novel PVC‐based membrane (PBM) and coated graphite membrane (CGM) sensors for La(III) based on BMDA were prepared. The electrodes display Nernstian behavior over wide concentration ranges (i.e., 1.0×10?5–1.0×10?1 M for PBM and 1.0×10?6–1.0×10?1 M for CGM). The potential response of sensors was pH independent in the range of 4.0–8.0. The sensors possess satisfactory reproducibility, fast response time (<15 s), and specially excellent discriminating ability for La3+ ions with respect to most of the cations. The membrane sensor was used as an indicator electrode in potentiometric titration of lanthanum ions with EDTA. The coated graphite membrane electrode was applied in determination of fluoride ions in mouth wash preparations.  相似文献   

13.
A novel metal–organic framework (MOF) was fabricated by spontaneous K+‐induced supramolecular self‐assembly with the embedded tripodal ligand units. When the 3D ligand was loaded onto Fe3O4@mSiO2 core‐shell nanoparticles, it could effectively separate K+ ions from a mixture of Na+, K+, Mg2+, and Ca2+ ions through nanoparticle‐assisted MOF crystallization into a Fe3O4@mSiO2@MOF hybrid material. Excess potassium ions could be extracted because of the specific cation–π interaction between K+ and the aromatic cavity of the MOF, leading to enhanced separation efficiency and suggesting a new application for MOFs.  相似文献   

14.
A novel copolymer, poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐2,6‐pyridylene‐1,2‐ethenylene) ( P3 ), containing N‐hexyl‐3,7‐phenothiazylene and 2,6‐pyridylene chromophores was synthesized to investigate the effect of protonation, metal complexation, and chemical oxidation on its absorption and photoluminescence (PL). Poly(N‐hexyl‐3,8‐iminodibenzyl‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) and poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) ( P2 ), consisting of 1,3‐divinylbenzene alternated with N‐hexyl‐3,8‐iminodibenzyl and N‐hexyl‐3,7‐phenothiazylene, respectively, were also prepared for comparison. Electrochemical investigations revealed that P3 exhibited lower band gaps (2.34 eV) due to alternating donor and acceptor conjugated units (push–pull structure). The absorption and PL spectral variations of P3 were easily manipulated by protonation, metal chelation, and chemical oxidation. P3 displayed significant bathochromic shifts when protonated with trifluoroacetic acid in chloroform. The complexation of P3 with Fe3+ led to a significant absorption change and fluorescence quenching, and this implied the coordination of ferric ions with the 2,6‐pyridylene groups in the backbone. Moreover, both phenothiazylene‐containing P2 and P3 showed conspicuous PL quenching with a slight redshift when oxidized with NOBF4. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1272–1284, 2004  相似文献   

15.
A novel fluorescent probe 5‐(diethylamino)‐2‐(((2‐(hydroxymethyl)quinolin‐8‐yl)imino)methyl)phenol ( QS) was synthesized by condensation reaction of 8‐aminoquinoline derivative and 4‐(diethylamino)salicylaldehyde. It was found that the probe QS was capable of high selectivity and sensitivity about specific color and fluorescence changes towards Zn2+ ion in EtOH‐H2O (v/v = 4/1, 0.01 M, Tris–HCl buffer, pH = 7.30) solution. The interaction of QS with Zn2+ ion illustrated a “turn‐on” fluorescence response at 550 nm (λex: 458 nm), moreover, after the subsequent addition of inorganic phosphate (Pi) into the solution above, a “turn‐off” fluorescence response was observed. The sensing ability of the probe QS towards Zn2+ was confirmed by fluorescence titration, UV–Vis titration and HRMS analysis. Besides, the intracellular sensing behavior of QS with Zn2+ and Pi were captured in living PC12 cells. The limit of detection (LOD) for Zn2+ and Pi sensing was found to be 0.03 μM and 0.08 μM, respectively.  相似文献   

16.
A series of para‐toluene sulfonamide ligands [TsNHPr‐i( HL 1 ), TsNHBu‐t( HL 2 ), TsNHPh( HL 3 ), TsNHPhMe‐p( HL 4 ), TsNHPhOMe‐p( HL 5 )] were synthesized by amidation using para‐toluene sulfonyl chloride reacting with different primary amines. A series of homoleptic lanthanide complexes (Ln L3, 1–10) (Ln = La, L = L1 ( 1 ), Ln = Gd, L = L2 ( 2 ), Ln = La, L = L2 ( 3 ), Ln = Gd, L = L2( 4 ), Ln = La, L = L3 ( 5 ), Ln = Gd, L = L3 ( 6 ), Ln = La, L = L4 ( 7 ), Ln = Gd, L = L4( 8 ), Ln = La, L = L5 ( 9 ), Ln = Gd, L = L5 ( 10 )) were prepared by amine elimination reactions of the ligands with Ln[N(SiMe3)2]3 (Ln = La, Gd). Complexes 1 , 3 , 5 , 7 and 9 were all characterized by NMR spectra, and the structures of complex 3 was determined by single‐crystal X‐ray diffraction. Complex 3 crystallizes a binuclear cluster, consisting of two La3+ and six (TsNBu‐t) anions. Three (TsNBu‐t) anions are chelating to each La3+ as bidentate model with O and N forming three‐membered chelate rings; one of three anions is bridging to another La3+ via oxygen. All complexes were characterized using elemental analysis and infrared spectra. The catalytic properties of complexes 1–10 for the ring‐opening polymerization of ε‐caprolactone were studied and the results showed that all complexes are efficient initiators for this ring‐opening polymerization reaction.  相似文献   

17.
The p‐arsanilic acid (p‐ASA), as an aromatic organoarsenic compounds, had received considerable concerns for their potential toxicity and carcinogenic properties. It was essential to detect p‐ASA with a facile method. In this paper, an europium based fluorescent metal–organic framework (MOF) [Eu2(clhex)·2H2O)]·H2O ( BUC‐69 ) was successfully prepared under hydrothermal conditions with 1,2,3,4,5,6‐cyclohexanehexacarboxylic acid (H6clhex) as organic linker. BUC‐69 displayed superior fluorescence capability to achieve selective and sensitive detection toward p‐ASA in water, which presented the first example of a MOF‐based sensor to detect p‐ASA. BUC‐69 showed excellent chemical stability in solutions under pH ranging from 4 to 12, which makes it be a potential sensor both in acidity and alkalinity condition. Significantly, BUC‐69 performed well in fluorescent sensing of p‐ASA at a low concentration (10?6 M) in the simulated wastewater prepared with real lake water, and the results were comparable to the values detected by Inductively Coupled Plasma Optical Emission Spectrometer (ICP‐OES). The corresponding mechanism of fluorescent sensing toward p‐ASA with BUC‐69 was proposed and affirmed.  相似文献   

18.
In this paper, temperature and pH‐sensitive interpenetrating polymer network (IPN) nanogels (NGs) were firstly prepared, and magnetic hybrid NGs were made through in‐situ precipitation of Fe2+ and Fe3+ into the IPN NGs. Under the optimized condition, the resulting hybrid NG dispersion with up to 17.3 wt% magnetite was stable, while the size distribution of the NGs is broad due to the formation of Fe3O4 nanoparticles outside the NGs. In order to synthesize relatively uniform magnetic NGs, magnetite content was reduced to 8.1 wt% magnetite. The NGs with 8.1 wt% magnetite can quickly self‐assemble into colloidal crystals induced by magnet, while such NGs slowly self‐assembled into colloidal crystals without external magnetic field. Furthermore, the reflection wavelength of the self‐assembled magnetic NGs showed red‐shift with increasing pH and temperature.  相似文献   

19.
Perylene diimide‐modified magnetic γ‐Fe2O3/CeO2 nanoparticles (γ‐Fe2O3/CeO2‐PDI) were prepared and exhibited excellent peroxidase‐like activity. The samples were characterized by HR‐TEM, XRD, Raman, N2 adsorption, magnetic strength and XPS. The obtained γ‐Fe2O3/CeO2‐PDI had size of 10~20 nm with high specific surface area of 77 m2/g, and could be easily separated from the aqueous solution by using a magnet, which are in favor of its practical application. Due to the decoration of PDI, the γ‐Fe2O3/CeO2‐PDI possessed more surface defects (Ce3+) and active oxygen species than that of γ‐Fe2O3/CeO2, resulting in the outstanding catalytic performance. And the composite catalyst also showed highly sensitive and selectivity toward VC with a limit of detection of 0.45 μM. Based on the fluorescent results, a possible hydroxyl radical (?OH) catalytic mechanism was proposed. It is believed that the as‐prepared γ‐Fe2O3/CeO2‐PDI nanoparticles are promising biosensors applied for biomedical and food analysis.  相似文献   

20.
Nitrogen and sulfur co-doped carbon dots (NS-CDs) were synthesized by one-step solvothermal method using oleic acid as the medium, ʟ-cystine and citric acid monohydrate as precursors. Based on the “on-off-on” fluorescence quenching mode, a novel method was established for determination of both Fe3+ and ascorbic acid. The synthesized NS-CDs can be employed as fluorescence chemical sensors for the direct determination of free iron in the aqueous phase and indirect determination of the ascorbic acid contents of vitamin C tablets with linear ranges of 0–10 μM (n = 3) and 0–30 μM (n = 3), and detection limits of 36.6 and 102.5 nM, respectively. These results demonstrate that the proposed method exhibits good selectivity and linearity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号