首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 301 毫秒
1.
Methanol permeation is one of the key problems for direct methanol fuel cell (DMFC) applications. It is necessary to change the structure of the cathode of membrane electrode assembly (MEA). Therefore, a novel MEA with double-layered catalyst cathode was prepared in this paper. The double-layered catalyst consists of PtRu black as inner catalyst layer and Pt black as outer catalyst layer. The inner catalyst layer is prepared for oxidation of the methanol permeated from anode. The results indicate that this double-layered catalyst reduced the effects of methanol crossover and assimilated mixed potential losses. The performance of MEA with double-layered catalyst cathode was 52.2 mW cm−2, which was a remarkable improvement compared with the performance of MEA with traditional cathode. The key factor responsible for the improved performance is the optimization of the electrode structure.  相似文献   

2.
针对空气自呼吸式直接甲醇燃料电池甲醇易渗透和阴极易水淹的特点,通过对催化层催化剂载量、阴极微孔层、阳极微孔层和膜等因素进行调控,对膜电极结构和性能的进行了优化.结果表明,使用高载量催化剂能有效降低甲醇渗透,但载量过高会引起传质阻力.当阳极微孔层PTFE含量为30%(bymass)时,可以有效促进CO2的均一析出,从而降低甲醇浓度梯度,减小甲醇透过.综合考虑甲醇渗透和阴极自返水,经优化后所得MEA在室温时自呼吸工作条件下,比功率密度达到33mW·cm-2,最优甲醇工作浓度为4mol·L-1.  相似文献   

3.
The cathode electrode structure of the direct methanol fuel cell (DMFC) was improved by a novel catalyst ink preparation method. Regulation of the solvent polarity in the cathode catalyst ink caused increases in the electrochemical active surface (EAS) for the oxygen reduction reaction (ORR) as well as decreases in the methanol crossover effect. In a two-step preparation, agglomerates consisting of catalyst and Nafion ionomers were decreased in size, and polar groups in the ionomers formed organized networks in the cathode catalyst layer. Despite Pt catalysts in the cathode being only 0.5 mg cm? 2, the maximum power density of the improved membrane electrode assembly (MEA) was 120 mW cm? 2, at 3 M methanol, which was much larger than that of traditional MEA (67 mW cm? 2).  相似文献   

4.
Direct methanol fuel cell (DMFC) consisting of a double-catalytic layered membrane electrode assembly (MEA) provide higher performance than that with the traditional MEA. This novel structured MEA includes a hydrophilic inner catalyst layer and a traditional electrode with an outer catalyst layer, which was made using both catalyst coated membrane (CCM) and gas diffusion electrode (GDE) methods. The inner catalyst was PtRu black on anode and Pt black on cathode. The outer catalyst was carbon supported Pt–Ru/Pt on anode and cathode, respectively. Thus in the double-catalytic layered electrodes three gradients were formed: catalyst concentration gradient, hydrophilicity gradient and porosity gradient, resulting in good mass transfer, proton and electron conducting and low methanol crossover. The peak density of DMFC with such MEA was 19 mW cm−2, operated at 2 M CH3OH, 2 atm oxygen at room temperature, which was much higher than DMFC with traditional MEA.  相似文献   

5.
The supply of cathode reactants in a passive direct methanol fuel cell (DMFC) relies on naturally breathing oxygen from ambient air. The successful operation of this type of passive fuel cell requires the overall mass transfer resistance of oxygen through the layered fuel cell structure to be minimized such that the voltage loss due to the oxygen concentration polarization can be reduced. In this work, we propose a new membrane electrode assembly (MEA), in which the conventional cathode gas diffusion layer (GDL) is eliminated while utilizing a porous metal structure for transporting oxygen and collecting current. We show theoretically that the new MEA enables a higher mass transfer rate of oxygen and thus better performance. The measured polarization and constant-current discharging behavior showed that the passive DMFC with the new MEA yielded better and much more stable performance than did the cell having the conventional MEA. The EIS spectrum analysis further demonstrated that the improved performance with the new MEA was attributed to the enhanced transport of oxygen as a result of the reduced mass transfer resistance in the fuel cell system.  相似文献   

6.
Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.  相似文献   

7.
通过测定甲醇渗透率,详细研究了阳极支撑层的聚四氟乙烯(PTFE)含量对全被动式直接甲醇燃料电池(DMFC)甲醇传质和电池性能的影响。 膜电极集合体均使用相同的阳极催化层,膜和阴极。 实验结果表明,随着阳极支撑层PTFE含量的提高,甲醇渗透速率明显减小。 其含量较高时,甲醇传质阻力较大,会导致电池在很低的电流密度下就出现传质控制区。 采用PTFE质量分数为40%的支撑层时,DMFC以9 mol/L甲醇为燃料最大功率密度可达32×10-3 W/cm2,也进一步证明了适当提高阳极支撑层的憎水性,既有助于减少甲醇的渗透,又缓解了阴极的“水淹”问题。  相似文献   

8.
生物质气催化合成甲醇的研究   总被引:17,自引:6,他引:11  
在高压微型反应装置上进行了生物质气合成甲醇的研究。利用组成为H2/CO/CO2 /N2(体积比)=52.5/21.5/22.8/3.2 的富CO2原料气考察了不同温度、压力和空速条件时甲醇的时空产率和质量分数。结果表明,在所考察的范围内,甲醇的产率和质量分数在260 ℃达到最大。产率和质量分数随反应压力升高而增大,空速增加使产率增大,甲醇的质量分数降低。当p=4 MPa,t=260 ℃,WHSV=5 280 h-1时, 甲醇的时空产率为0.79 g·(mL·h)-1,质量分数为96.2%,与工业合成气相比,分别下降25.8%和1.64%。  相似文献   

9.
A series of sulfonated poly(ether ether ketone)/monoethanolamine/adipic acid (SPEEK/MEA/AA) composite membranes are prepared and investigated to assess their possibility as proton exchange membranes in direct methanol fuel cells (DMFCs). A preliminary evaluation shows that introducing MEA and AA into SPEEK matrix decreases the thermal stability of membrane. However, the degradation temperatures are still above 260 °C, satisfying the requirement for fuel cell operation. Compared with the pure SPEEK membrane, the composite membranes exhibit not only lower water uptake and swelling ratios but also better mechanical property and oxidative stability. Noticeably, the methanol diffusion coefficient of the composite membranes decrease significantly from 3.15 × 10?6 to 0.76 × 10?6 cm2/s with increasing MEA and AA content, accompanied by only a small sacrifice in proton conductivity. Although both the methanol diffusion coefficient and the proton conductivity of composite membranes are lower than those of pure SPEEK and Nafion® 117 membranes, their selectivity (conductivity/methanol diffusion coefficient) are higher. In addition, the composite membranes show excellent stability in aqueous methanol solution. The good thermal and chemical stability, low swelling ratio, excellent mechanical property, low methanol diffusion coefficient, and high selectivity make the use of these composite membranes in DMFCs quite attractive. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2871–2879, 2007  相似文献   

10.
碳纤维基PtSn催化剂直接乙醇燃料电池制备及性能研究   总被引:1,自引:1,他引:0  
采用自制的碳纤维基PtSn催化剂薄膜作为阳极催化剂,商用Pt/C作为阴极催化剂,Nafion 115膜作为质子交换膜,通过热压制成膜电极,组装平板型直接乙醇燃料单电池,搭建测试系统并进行性能的测试,研究了温度、乙醇浓度、溶液流量、进气流量等参数对DEFC的影响。结果表明,当乙醇溶液浓度为1.0 mol/L、溶液进样流量为1.0 mL/min、溶液温度为80 ℃、氧气进样流量为100 mL/min时结果较优,单电池的最高功率密度达18.2 mW/cm2。  相似文献   

11.
Performance of a low temperature polymer electrolyte membrane fuel cell (PEMFC) is highly dependent on the kind of catalysts, catalyst supports, ionomer amount on the catalyst layers (CL), membrane types and operating conditions. In this work, we investigated the influence of membrane types and CL compositions on MEA performance. MEA performance increases under all practically relevant load conditions with reduction of the membrane thickness from 50 to 15 μm, however further decrease in membrane thickness from 15 to 10 μm leads to reduction in cell voltage at high current loads. A thick anode CL is found to be beneficial under wet operating conditions assuming more pore space is provided to accommodate liquid water, whereas under dry operating conditions, an intermediate thickness of the anode CL is beneficial. When studying the impact of catalyst layer thickness, too thin a catalyst layer again shows reduced performance due to increased ohmic resistance ruled out the performance of the MEAs which have identical Pt crystallite sizes on the cathode CLs i. e. the thinnest the cathode CL, the highest the voltage were achieved at a defined current load. Adaptation of the operating conditions is highly anticipated to achieve the highest MEA performance.  相似文献   

12.
The proton exchange membrane direct methanol fuel cells (PEMDMFC) show considerably lower performance than the hydrogen fuel cell because of inefficient methanol oxidation and the crossover of methanol through the membrane that separates the anode from the cathode. This paper describes electrochemical measurements made on a Nafion membrane modified by electrochemical deposition of poly(1-methyl pyrrole) on its side.  相似文献   

13.
A novel composite anode catalyst layer for direct methanol fuel cell is reported in this paper. The dual-layer anode, which is based on the catalyst coated membrane technique, characterizes a morphological variety of the catalyst layer. The inner sub-layer with a dense morphology can effectively suppress methanol crossover. On the other hand, the outer sub-layer modified by the pore-forming agent, NH4HCO3 and the carbon nanotubes can enhance the electrochemical surface area and increase the catalyst utilization. The structural improvement of anode catalyst layer results in a 40% increment in maximum power density during the single cell test at 30 °C.  相似文献   

14.
Analytical model of the anode side of a direct methanol fuel cell is developed. The model takes into account non-Tafel kinetics of electrochemical reaction of methanol oxidation, diffusion transport of methanol through the backing layer and methanol crossover. General expression for the polarization voltage of the anode side is derived and simplified in a limits of small and large currents. Total limiting current density appears to be a combination of reaction- and diffusion-limiting current densities. The effect of methanol crossover on performance of the anode side is rationalized.  相似文献   

15.
采用直接接枝法, 将来自对氨基苯磺酸的苯磺酸官能团引入氧化多壁碳纳米管, 制得磺化多壁碳纳米管(SO3-MCNT). 再以SO3-MCNT为填料, 以Nafion离聚物为黏结剂, 利用超声喷涂在商业N212质子交换膜一侧构建了新的膜层, 获得了一种复合膜(SO3-MCNT?N212). 使用SO3-MCNT?N212制备燃料电池膜电极(MEA), 并用于直接甲醇燃料电池(DMFC)测试. 与使用普通N212膜的膜电极相比, 该膜电极的性能得到明显提升. 进一步分析表明, SO3-MCNT膜层的引入降低了阳极向阴极的跨膜水迁移作用, 缓解了阴极的水淹, 从而降低了浓差极化, 提升了膜电极的性能.  相似文献   

16.
溶胶-凝胶流动相异型直接甲醇燃料电池性能研究   总被引:1,自引:0,他引:1  
以掺杂石墨粉的中间相碳微球(MCMB/G)烧结管为阴极支撑体,采用浸涂工艺分别制备了扩散层和催化层并在其外表面包裹Nafion膜,制得管状异型阴极并组装成异型直接甲醇燃料电池;采用溶胶-凝胶法制备了适用于直接甲醇燃料电池的溶胶-凝胶流动相。研究了溶胶-凝胶流动相异型直接甲醇燃料电池的阻抗,考察了阴极支撑体壁厚、阴极扩散层载量、实验温度和溶胶黏度等对电池极化性能的影响。结果表明,异型电池阻抗比传统平板电池大,但活化后电池阻抗明显下降;较低的溶胶黏度和较高的工作温度有利于提高电池性能;支撑体壁厚为1.3 mm、扩散层载量为3.5 mg/cm2时的电极性能最优。  相似文献   

17.
An apparatus to determine the vapor-liquid equilibria of CO(2)/ionic liquid (IL)/organic solvent multisystems and the viscosity of the liquid phase at elevated pressures has been constructed. The solubility of CO(2) in 3-butyl-1-methyl-imidazolium hexafluorophosphate ([C(4)mim][PF(6)]) and the viscosity of CO(2)-saturated [C(4)mim][PF(6)] have been studied at 313.15, 323.15, and 333.15 K and at pressures up to 12.5 MPa. The phase behavior of CO(2)/[C(4)mim][PF(6)]/methanol ternary mixture and the viscosity of the liquid phases at equilibrium condition have also been determined at 313.15 K and at 7.15 and 10.00 MPa. The partition coefficients of the components in the ternary system are calculated. Peng-Robinson equation of state and some thermodynamic functions are combined to calculate the fugacity coefficients of the components in the system. It demonstrates that the viscosity of the IL-rich phase decreases significantly with increasing pressure of CO(2), and the effect of temperature on the viscosity of CO(2)/IL mixture is not noticeable at high pressure, although the viscosity of the CO(2)-free IL decreases dramatically with increasing temperature. Compressed CO(2) may become an attractive reagent for reducing the viscosity of ILs in many applications. The mole fraction of methanol in the CO(2)-rich phase is much lower than that in the IL-rich phase; this indicates that the interaction between the IL and methanol is stronger than that between CO(2) and methanol. The fugacity coefficient of CO(2) in IL-rich phase is larger than unity, while that of methanol is much small than unity, which further suggests that methanol-IL interaction is much stronger than CO(2)-IL interaction. However, the CO(2)-IL interaction is stronger than the CO(2)-methanol interaction.  相似文献   

18.
钟理  Chuang Karl 《无机化学学报》2007,23(11):1875-1881
制备了硫化氢固体氧化物燃料电池的无机质子传导膜和膜-电极-组装(MEA)。用扫描电镜(SEM)和电化学阻抗(EIS)技术表征了无机质子传导膜和MEA的形貌与性能。研究了不同膜厚和掺杂或没有掺杂Li2WO4组分的传导膜和MEA的性能。结果表明,与没有掺杂Li2WO4组分制备的MEA相比,掺杂了Li2WO4组分制备的MEA的电导提高了一个数量级,掺杂了Li2WO4制备的MEA硫化氢燃料电池在操作条件下具有更好的化学稳定性和电化学性能。以Mo-Ni-S为主要成分的复合阳极、0.8 mm厚和组成为67wt% Li2SO4 + 8wt% Li2WO4 + 25wt% Al2O3复合材料制备的质子传导膜、NiO为主要组分的复合阴极构成的MEA硫化氢燃料电池,在650、700和750 ℃时,最大输出功率密度分别达到50、85和130 mW·cm-2,最大电流密度分别为200、350和480 mA·cm-2。  相似文献   

19.
张佳凤  王黎  孙杨 《化学通报》2016,79(10):958-962
微生物燃料电池(MFC)反应器是利用附着在阳极上的产氢微生物,在吸收烟气CO2的同时将CO2逆转化合成高附加值的生物合成燃料的装置。试验选用从牛粪中分离筛选出的梭状芽孢菌(Clostridium.sp)作为合成生物燃料的合成菌,将MFC反应装置接入电化学工作站进行CV测试,当发生还原反应时,在-0.5 V时出现还原峰,利用直流稳压电源恒电压电解,检测到合成的生物燃料为甲醇。在24 h时甲醇的积累量达到最大3.13 mmol/L;当CO2气体比例为15%时甲醇积累量最大,为2.98 mmol/L。在细菌接种量为1 mL时,甲醇积累量达到最大,为2.76 mmol/L。,最适条件下的CO2转化率为7.5%。  相似文献   

20.
膜电极(MEA)是直接甲醇燃料电池(DMFC)的核心部件。文中对MEA的研究现状从4个方面进行了详细评述。首先,对组成MEA的关键材料,如电催化剂、质子交换膜、扩散层的研究进展进行了介绍,认为开发低温高效、贵金属载量低的电催化剂以及研制低成本、低甲醇渗透的非氟质子交换膜是MEA关键材料的研究方向。第二,对于MEA的制备方法,文中对以GDL为支撑体的GDE法和以PEM为支撑体的CCM法进行了详细的评述,认为CCM法是今后MEA制备工艺的重要发展方向。第三,关于MEA的表征技术,认为采用电化学方法结合现代谱学技术仍是未来一段时间对MEA表征的主要手段。第四,介绍了MEA数学模型的研究现状,DMFC数学模型的研究是以PEMFC的模型为基础建立起来的,但是建立DMFC的数学模型更为复杂,认为今后对DMFC膜电极模型的研究要充分考虑阳极二氧化碳与甲醇水溶液的两相流问题以及阴极甲醇渗透对电池性能影响的问题。最后,对直接甲醇燃料电池膜电极未来的发展进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号