首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
氨是水体主要的污染物之一,其含量是水质评估的重要参数。本研究采用真空紫外光离子源-高场不对称波形离子迁移谱(Ultraviolet photoionization high field asymmetric waveform ion mobility spectrometry, UVFAIMS)技术,发展一种的水中氨含量的现场快速检测方法。通过对比标准氨样品和水中微量氨UV-FAIMS 谱图峰的特征补偿电压(Compensation voltage, CV)值,确定了水中HN+4的特征离子峰位置;研究了不同分离电压(Dispersion voltages, DV)下HN+4谱图峰位置的关系,获得了HN+4的特征识别系数α2和α4分别为2.21×10-5 Td-2和-1.45323×10-9 Td-4;通过不同浓度样品的信号响应,研究了UV-FAIMS 对水中氨的检出限,在信噪比为3的情况下达到了9.2 μg/ L。本研究为水中氨现场检测提供了一种快速、无需前处理的技术手段。  相似文献   

2.
一种微型FAIMS传感器芯片的研制   总被引:1,自引:0,他引:1  
李华  王晓浩  唐飞  张亮  杨吉  吝涛  丁力 《物理化学学报》2010,26(5):1355-1363
基于微机电系统(MEMS)技术,研制了一种微型高场非对称波形离子迁移谱(FAIMS)传感器芯片.芯片尺寸为18.8mm×12.4mm×1.2mm,由离子化区、迁移区、离子检测区组成.采用真空紫外灯离子源在大气压环境下对样品进行离子化,经过离子化区中聚焦电极的电场作用,实现离子在进入迁移区之前的聚焦,提高离子信号的强度.通过在上下玻璃上溅射Au/Cr(300nm/30nm)金属,并与厚度为200μm、采用感应耦合等离子体(ICP)工艺刻蚀的硅片键合,形成迁移区的矩形通道,尺寸为10mm×5mm×0.2mm.离子检测区为三排直径200μm、间距100μm交错排列的圆柱阵列式微法拉第筒,能同时检测正负离子.采用频率为2MHz,最大电压为364V,占空比为30%的高场非对称方波电压进行FAIMS芯片实验.以丙酮和甲苯为实验样品,载气流速80L·h-1,补偿电压从-10V到3V以0.1V的步长进行扫描,得到了丙酮和甲苯的FAIMS谱图,验证了FAIMS芯片的性能.丙酮和甲苯的FAIMS-MS实验进一步表明FAIMS系统实现了离子分离和过滤功能.  相似文献   

3.
载气流速对高场不对称波形离子迁移谱的影响   总被引:3,自引:1,他引:2  
载气流速是影响高场不对称波形离子迁移谱(FAIMS)的重要参数.以自制的高场不对称波形离子迁移谱仪为实验平台,在射频电场幅值3 kV/cm,频率500 kHz,占空比0.36的条件下,研究了载气流速对苯离子迁移谱谱峰强度和半峰宽的影响.实验结果表明: 载气流速为3.7 L/min时,苯样品的谱峰强度最大,仪器的灵敏度最高.随着载气流速的增加,谱峰半峰宽变宽,仪器的分辨率下降.载气流速为3 .0~3.7 L/min时仪器综合性能最佳.此结果对于控制迁移谱仪载气流速有重要的参考意义.  相似文献   

4.
通过扩散法制得低浓度的对甲基膦酸二甲酯(DMMP)、磷酸三丁酯(TBP)、二甲基亚砜(DMSO)3种化学战剂模拟剂蒸气,并用自制紫外光离子源高场不对称波形离子迁移谱仪(Ultraviolet photoionization high field asymmetric ion mobility spectrometry,UV-FAIMS)对其进行检测,得到不同样品在不同分离电压下特征谱图,并通过对多组分离电压(Dispersion voltage,DV)和补偿电压(Compensation voltage,CV)求解,建立了α2和α4二维谱图,提高了FAIMS的分辨识别能力。此外,对UV-FAIMS的检测灵敏度进行了测定。实验表明,此系统对甲基膦酸二甲酯(DMMP)的检测灵敏度优于0.55μg/L。  相似文献   

5.
基于两维扫描高场不对称离子迁移谱技术检测挥发酚   总被引:2,自引:0,他引:2  
要采用自制高场不对称波形离子迁移谱(FAIMS)仪对苯酚、2-甲酚、3-甲酚、4-甲酚以及2,4-二氯酚进行检测,通过结合补偿电压以及射频高压的二维扫描优化了对检测物的分辨.射频高场强度为1.6×104 V/cm时,2-甲酚与4-甲酚有最佳分辨效果,其余物质在高场强度大于1.8×104 V/cm时可以得到最佳分辨.研究...  相似文献   

6.
采用金属扩散管-芯片式高场非对称波形离子迁移谱(FAIMS)技术对苯丙氨酸进行了快速检测,设定测试压强为250 kPa,金属扩散管温度为190℃,在优化的最佳分析条件下,即:载气流速为2000 mL/min,分离电压为152.8 V时,在正模式下获得了苯丙氨酸的离子特征谱图和补偿电压特征值-0.62 V.另外,利用FAIMS对不同浓度的苯丙氨酸样品气进行了检测,确定了FAIMS检测的定量线性范围为6~20 mg/L和检出限为5.9 mg/L.本实验为FAIMS应用于苯丙氨酸的快速检测提供了重要参考.  相似文献   

7.
基于微机电系统技术(Micro electro mechanical system,MEMS),研制了微型高场非对称波形离子迁移谱(High-field asymmetric waveform ion mobility spectrometry,FAIMS)传感器芯片。芯片采用感应耦合等离子体(ICP)刻蚀和两次硅-玻璃键合工艺加工,尺寸为18.8mm×12.4mm×1.2mm,其中迁移区尺寸为10mm×5mm×0.2mm。设计了高场非对称方波电源,可输出最大频率2MHz,电压峰-峰值1000V,占空比20%~50%连续可调的方波射频电压。以乙醇为实验样品,分析了方波射频电压幅值对FAIMS传感器芯片性能的影响。实验表明,随着电压幅值的增加,FAIMS分辨率提高,灵敏度下降,补偿电压绝对值增大,且芯片对乙醇的检出限可达8.9mg/m3。  相似文献   

8.
本研究采用紫外光离子源-高场不对称波形离子迁移谱(UV-FAIMS)快速检测环境中挥发性有机物.选取苯和对二甲苯为研究对象,并分析了分离电压、流速等因素对其分离识别的影响.实验结果表明:当分离电压值为0~1200 V时,苯和对二甲苯信号强度逐渐降低,而特征补偿电压值却逐渐增加.实验选取分离电压值为900 V,当载气流速为0~240 L/h时,苯和对二甲苯的特征离子峰信号强度逐渐增加,当载气流速为0~120 L/h时,苯和对二甲苯团簇峰信号强度增加,当载气流速为120~240 L/h时,苯的团簇峰信号强度增加,而对二甲苯的团簇峰信号强度降低.此外,对样品浓度、信号强度与噪声的比值进行探讨,获得UV-FAIMS检测苯的检测限为0.011mg/m3.  相似文献   

9.
高场非对称波形离子迁移谱(FAIMS)是一种芯片级高灵敏度快速分析检测技术,其在大气压环境下工作的特点使之受环境影响明显,其中气体的湿度是显著影响因素,湿度的变化可引起迁移区离子反应机理以及迁移过程的变化。该文研究了干燥条件下痕量硫化氢的定量检测方法,确定了DF=33%时的检测线性范围与回归方程。利用PTFE管渗透作用,设定水浴温度为40~90℃,考察了不同含量水分对FAIMS检测硫化氢的影响。通过考察不同湿度下硫化氢的FAIMS特征谱图以及特征离子峰,研究了掺杂水分对于硫化氢谱峰峰值、补偿电压以及检测分辨率的影响。结果表明,FAIMS对于硫化氢的检测谱图清晰可见,能够准确定位其特征离子峰。随着气体中水分增多,不同分离电场下的产物离子峰峰值增大,说明湿度增大在一定程度上提高了灵敏度,DF=35%时的检出限为1.43×10~(-3) mg/m~3。  相似文献   

10.
采用热解析-高场非对称波形离子迁移谱(FAIMS)技术快速检测柯衣定、 孔雀石绿、 罗丹明B和甲基红4种合成色素. 通过对热解析温度和载气流量进行优化, 确定了不同色素的离子特征信号. 在最佳分析条件下, 热解析温度为160 ℃, 载气流量为1.6 L/min, 采用不同模式下补偿电压(CV)值定性, 以FAIMS在正模式下检测柯衣定(CV=0.41 V)和罗丹明B(CV=-0.89 V), 在负模式下检测甲基红(CV=-0.67 V)和孔雀石绿(CV=0.02 V); 用外标法定量检测了样品中的4种合成色素, 线性关系R2≥0.9967, 检出限为2.5~10 μg/L, 定量限为5~20 μg/L, 加标回收率≥78.2%, 相对标准偏差RSD≤8%. 本文为FAIMS技术快速检测合成色素提供了一定的技术基础.  相似文献   

11.
The water droplets in the process of electrostatic coalescence are important when studying electrohydrodynamics. In the present study, the electric field and flow field are coupled through the phase field method based on the Cahn–Hilliard formulation. A numerical simulation model of single droplet deformation under the coupling field was established. It simulated the deformation behavior of the movement of a droplet in the continuous phase and took the impact of droplet deformation into consideration which is affected by two-phase flow velocity, electric field strength, the droplet diameter, and the interfacial tension. The results indicated that under the single action of the flow field, when the flow velocity was lower, the droplet diameter was greater as was the droplet deformation degree. When the flow velocity was increased, the droplet deformation degree of a small-diameter droplet was at its maximum size, the large-diameter droplet had a smaller deformation degree, and the middle-diameter droplet was at a minimum deformation degree. When the flow velocity was further increased, the droplet diameter was smaller, and the droplet deformation degree was greater. Under the coupled effect of the electric field and flow field, the two-phase flow velocity and the electric field strength were greater, and the degree of droplet deformation was greater. While the droplet diameter and interfacial tension were smaller, the degree of droplet deformation was greater. Droplet deformation degree increased along with the two-phase flow velocity. The research results provided a theoretical basis for gas–liquid separation with electrostatic coalescence technology.  相似文献   

12.
The coalescence behavior of droplets in an electric field belongs to the important research contents of electrohydrodynamics. Based on the phase field method of the Cahn–Hilliard equation, the electric field and the flow field are coupled to establish the numerical model of twin droplet coalescence in a coupled field. The effects of flow rate, electric field strength, droplet diameter, and interfacial tension on the coalescence behavior of droplets during the coalescence process were investigated. The results show that the dynamic behavior of the droplets is divided into coalescence, after coalescence rupture, and no coalescence under the coupling of electric field and flow field. The proper increase of the electric field strength will accelerate the coalescence of the droplets, and the high electric field strength causes the droplets to burst after coalescence. Excessive flow rates make droplets less prone to coalescence. Under the coupling field, the larger the droplet interface tension, the smaller the droplet diameter, the smaller the flow rate, and the shorter the droplet coalescence time. The results provide a theoretical basis for the application of electrostatic coalescence in gas–liquid separation technology.  相似文献   

13.
We report the development of a nondestructive method to estimate the electric field (EF) distribution on a nano-sized sample surface in atom probe (AP) analysis. The simulated EF distribution on an ideal hemisphere indicates that the largest EF exists on the geometrical top of the ideal hemisphere and that EF decreases as the emitting area getting away from the sample apex. To estimate the EF distribution on a real sample surface, the sample apex is determined via comparing the field ion microscopy (FIM) signal intensity of {113} planes on the symmetrical sample surface. A series of contour maps showing the intensity of the evaporated ions (eg, H+) was obtained by applying various EFs on the sample surface. A plot of relative EFs with respect to the emitting angle can thus be extracted.  相似文献   

14.
Summary We present a preliminary model for describing a solvated intramolecular charge transfer reaction coupled to a quantum mechanical radiation field. Actual calculations of energies and couplings were performed with a recently developed self-consistent reaction field response method. The representation of dressed molecular states is used for calculating state populations for various laser fields. The state populations are sensitive to the properties of the laser field.  相似文献   

15.
The force field conversion from one MD program to another one is exhausting and error‐prone. Although single conversion tools from one MD program to another exist not every combination and both directions of conversion are available for the favorite MD programs Amber , Charmm , Dl‐ Poly , Gromacs , and Lammps . We present here a general tool for the force field conversion on the basis of an XML document. The force field is converted to and from this XML structure facilitating the implementation of new MD programs for the conversion. Furthermore, the XML structure is human readable and can be manipulated before continuing the conversion. We report, as testcases, the conversions of topologies for acetonitrile, dimethylformamide, and 1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonate comprising also Urey–Bradley and Ryckaert–Bellemans potentials. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
The Universal Force Field (UFF) is a classical force field applicable to almost all atom types of the periodic table. Such a flexibility makes this force field a potential good candidate for simulations involving a large spectrum of systems and, indeed, UFF has been applied to various families of molecules. Unfortunately, initializing UFF, that is, performing molecular structure perception to determine which parameters should be used to compute the UFF energy and forces, appears to be a difficult problem. Although many perception methods exist, they mostly focus on organic molecules, and are thus not well‐adapted to the diversity of systems potentially considered with UFF. In this article, we propose an automatic perception method for initializing UFF that includes the identification of the system's connectivity, the assignment of bond orders as well as UFF atom types. This perception scheme is proposed as a self‐contained UFF implementation integrated in a new module for the SAMSON software platform for computational nanoscience ( http://www.samson-connect.net ). We validate both the automatic perception method and the UFF implementation on a series of benchmarks.  相似文献   

17.
We present a transversal alternating field electrophoresis chamber that allows modifiable inner widths to accommodate low- or high-throughput formats, with 7.8 cm opposite electrode separation and 30.4 cm electrode length. Removable slotted sheets divide the chamber into four smaller compartments, each one supporting a minigel of 3.85 cm in length and 7.1 cm in width. Replacements of slotted sheets with solid dielectric blocks with the sizes and shapes of compartments permit to occlude chamber compartments, changing from 4 to 1 the numbers of minigels per run, from 88 to 13 the maximum numbers of samples, and from 1688 to 422 mL the volume of buffer poured into the chamber. Saccharomyces cerevisiae chromosomes gave its characteristic DNA band pattern in all compartments, whereas migrations of DNA molecules are not affected by the occlusion of compartments.  相似文献   

18.
Experiments showed that the existence of electric fields in non-redox processes may alter the catalytic activity, rate enhancement, and selection of organic reactions. It is expected that the interaction between electric fields and chemical reactions will create new avenues for producing materials with desired properties in several chemical disciplines, including synthetic organic chemistry, catalysis, nanotechnology, membrane technology, and enzyme catalysis. Specifically, in this review, we discuss the elegant experimental investigations carried out using the scanning tunneling microscope, the interfacial electric field, and designed local electric fields. The results of these studies are remarkable, leading to new information on the function of electric fields in controlling chemical reactivity and selectivity in different reactions and offering a glimpse of the great potential of electrostatic fields. This article not only presents the core concepts of field-induced chemical transformations but also illustrates the potential use of electric field catalysis in chemistry and other fields.  相似文献   

19.
The 3 symbols required for the application of the Wigner-Eckart theorem to strong ligand field matrix elements are derived for complex basis functions quantized on the C 4 Z , C 3 XYZ , C 2 Z and C 2 XY axes of an octahedron. This scheme provides a standardized analysis technique for the matrix elements of subgroups in each of the four physically significant chains of the double group O h * . This standardization yields the minimum necessary number of ligand field parameters in any subgroup and makes possible the direct comparability of equivalent parameters in different symmetries. A unique numerical labelling for both representations and complex components on each axis provides both a simple component selection rule algebra and numerical phase factors governing permutation and conjugation of the 3 symbols.  相似文献   

20.
In the ultrasonic field, stable silver colloids were produced by the reduction of AgNO3 with the protection of PVP using KBH4 or N2H4·H2O as reductant. The main factors affecting the morphology of silver nanoparticles, such as distribution of the ultrasonic field, ultrasonic time, ultrasonic power, and the species of reductant, were studied. The silver colloids were identified by TEM and spectrophotometry. The results indicate that the factors such as distribution of the ultrasonic field, ultrasonic time, ultrasonic power, and the species of reductant have a great impact on the morphology of the silver nanoparticles. The size of the silver nanoparticles decreases with the ultrasonic power and ultrasonic time increasing. Ag nanoparticles prepared in standing wave field preferentially grow in a certain direction, which is propitious for forming hexagonal-and spherical-like silver nanoparticles. Monodispersed spherical silver nanoparticles are easily synthesized in the diffusion field. The stability of silver colloid becomes improved by ultrasonic treatment. For example, precipitate is not found after several weeks for the silver colloid prepared with an ultrasonic treatment time of 180 min. The silver nanoparticles prepared without ultrasonic treatment are large spherical-like and hexagonal. Well-dispersed spherical silver particles with a mean size of about 20 nm have been prepared under ultrasonic treatment. Spherical, spherical-like, and hexagonal silver nanoparticles can be obtained by changing the reductants. __________ Translated from Journal of Tianjin University, 2006, 39(1) (in Chinese)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号