首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以H22肝癌的balb/c荷瘤小鼠为动物模型,考察了紫杉醇纳米胶束、紫杉醇注射液和生理盐水对小鼠肿瘤的抑制效果。 紫杉醇注射液组、紫杉醇纳米胶束低剂量组和紫杉醇纳米胶束高剂量组在给药后10 d的肿瘤相对体积抑制率分别为22%、49%和67%,瘤重抑制率分别为29%、45%和47%;蛋白表达检测结果显示,紫杉醇纳米胶束组呈现p53的高表达和bcl-2的低表达,说明紫杉醇纳米胶束对小鼠H22肝癌的抑制作用强于紫杉醇注射液。  相似文献   

2.
二氯乙酸钠电纺纤维毡改善宫颈癌小鼠生存质量   总被引:1,自引:1,他引:0  
通过溶液静电纺丝的方法,将水溶性药物二氯乙酸钠(DCA)包裹入油溶性聚乳酸(PLA)中,制备出二氯乙酸钠电纺纤维毡。 将其应用于宫颈癌的活体实验中,结果表明在为期19 d的治疗下,荷瘤小鼠的肿瘤抑制率达到94%,总体康复率达到38%。 同时,DCA电纺纤维毡还极大地抑制了宫颈癌后期复发和转移的趋势,提高了荷瘤小鼠的生存质量,是一种安全且疗效确切的抗癌给药剂型。  相似文献   

3.
合成了一种甘露醇引发的星型共聚物甘露醇-聚乳酸-聚乙三醇1000维生素E琥珀酸酯(M-PLATPGS).利用纳米沉淀法制备载紫杉醇M-PLA-TPGS纳米颗粒.纳米颗粒近似球形,粒径分布较窄.对载药纳米颗粒进行粒径、表面电荷、载药量、包封率和体外药物释放的表征,结果表明,体外药物释放呈双相释放模型,M-PLA-TPGS纳米颗粒在前列腺癌PC-3细胞中的摄取水平要高于PLGA和PLA-TPGS纳米颗粒.载紫杉醇M-PLA-TPGS纳米颗粒对于前列腺癌细胞的的毒性显著高于载紫杉醇PLA-TPGS纳米颗粒和商业制剂Taxol,证明星型M-PLA-TPGS聚合物作为纳米药物载体优于线性PLGA和PLA-TPGS聚合物.  相似文献   

4.
王通  柳时  张秀英 《应用化学》2017,34(10):1127-1133
为了探讨载有顺铂的温敏凝胶对小鼠宫颈癌的局部化疗作用,制备了载有顺铂的泊洛沙姆温敏凝胶,并通过流变学、体外溶蚀、体外释放等技术手段表征其结构和性能,采用鼠源宫颈癌U14细胞制备了原位宫颈/阴道癌模型,将载药凝胶灌注入荷瘤鼠阴道,评价载药凝胶对小鼠宫颈/阴道癌的抑制作用。结果表明,载有顺铂的泊洛沙姆温敏凝胶经阴道给药后对小鼠宫颈/阴道癌的抑瘤率可达到63.1%,可有效抑制小鼠宫颈癌的生长,而系统安全性则远远高于静脉注射顺铂。因此,载有顺铂的温敏凝胶有可能成为一种新型的宫颈癌治疗剂型。  相似文献   

5.
利用两亲性聚乙二醇-聚乳酸共聚物(PEG-PDLLA)包覆荧光染料(DPBA)和紫杉醇(PTX),通过自组装方法制得载药荧光纳米粒子DPBA/PTX@PEG-PDLLA.纳米粒子尺寸均一,具有良好的生物相容性.对纳米粒子的发光性质、载药量和体外药物释放等进行了表征,并考察了纳米粒子对乳腺癌细胞MCF-7的抑制效果,观察了MCF-7细胞对纳米粒子的摄取情况.结果表明,DPBA/PTX@PEG-PDLLA纳米粒子具有较强的红光发射,不仅可以用于MCF-7肿瘤细胞质荧光成像,而且对肿瘤细胞的增殖具有一定的抑制能力.  相似文献   

6.
将羧基化的水溶性葡聚糖(Dex)与紫杉醇(PTX)化学偶联, 制得载药纳米胶束M(PTX), 再将M(PTX)与嗜神经性病毒衍生肽(RVG29)化学偶联, 得到RVG29靶向的载药纳米胶束M(RVG,PTX). 采用核磁共振氢谱(1H NMR)测定了Dex-PTX及RVG-Dex-PTX键合物的分子量, 并对2种胶束进行了表征, 考察了2种胶束对肿瘤细胞的抑制效果及细胞凋亡情况, 观察了C6细胞对荧光标记M(RVG,PTX)和M(PTX)的摄取情况. 结果表明, 羧基化葡聚糖-紫杉醇键合物的分子量约为16500, 紫杉醇的质量约为葡聚糖的20%, RVG29的质量约为葡聚糖的10%. 2种胶束的粒径在45~60 nm之间; M(RVG,PTX)胶束对C6细胞的抑制作用具有浓度和时间依赖性, 细胞抑制率随着作用时间和药物浓度增加而增加, 且M(RVG,PTX)胶束对C6细胞的抑制作用强于M(PTX)胶束. 细胞摄取实验结果表明, 与M(PTX)相比, C6细胞摄取了更多的M(RVG,PTX)胶束. 如果先用游离的RVG29处理C6细胞, 再进行细胞实验, 则M(RVG,PTX)胶束对C6细胞生长的抑制作用及被C6细胞摄取的比率显著降低, 与 M(PTX)相当. 表明靶向载药胶束M(RVG,PTX)中的RVG29保留了游离RVG29的活性, 对C6细胞依然具有靶向效应, 从而介导了M(RVG,PTX)被C6细胞的摄取, 增强了对C6细胞的生长抑制作用. 由于M(RVG,PTX)胶束只使用水溶性葡聚糖作载体, 不涉及疏水高分子链段, 不需要分别制备载药高分子和靶向高分子然后再共组装, 因而制备过程比较简单, 同时具有载药和靶向功能.  相似文献   

7.
本文通过复乳法制备了具有微波增敏功能的单甲氧基醚聚乙二醇-聚乳酸羟基乙酸(mPEG-PLGA)栓塞微球,用于原发性肝癌的治疗研究。mPEG-PLGA微球生物安全性良好,呈较均匀的单分散性,平均粒径约为63μm。与对照组相比,mPEG-PLGA微球在微波辐射下能升高8.5℃。以ICR小鼠皮下H22肿瘤为模型,在微球辅助下,微波消融使得小鼠肿瘤抑制率达到100%。以新西兰白兔VX-2肝脏原位移植瘤为模型,经肝动脉超选择介入给药后,数字减影血管造影(DSA)图像显示肿瘤和周围血管迅速"消失",mPEG-PLGA微球具有良好的栓塞效果。微波消融患处,材料+微波组6天后肿瘤在两个方向的消融直径分别达到15.76和21.85mm(微波组为11.18和11.78mm)。本文开发的mPEG-PLGA微球实现了动脉栓塞与微波增敏消融的协同肿瘤治疗,可为原发性肝癌的治疗提供有效医用材料。  相似文献   

8.
制备了2种两亲性生物降解嵌段共聚物聚乙二醇-聚(乳酸-碳酸酯),进而与紫杉醇和叶酸共价键合,形成高分子-紫杉醇键合物和高分子-叶酸键合物,将它们共组装成复合纳米胶束,直径约50 nm,含紫杉醇27 wt%,含叶酸1.4 wt%.培养了人卵巢癌SKOV3细胞,采用四氮唑(MTT)比色法、流式细胞术(FCM)证明了市售紫杉醇(Taxol)、紫杉醇胶束(M(PTX))及叶酸靶向紫杉醇胶束(FA-M(PTX))在10μg/mL浓度下对SKOV3细胞生长有明显抑制作用,并且M(PTX)和FA-M(PTX)优于Taxol.构建了皮下卵巢癌balb/c荷瘤裸鼠动物模型,考察了Taxol,M(PTX)和FA-M(PTX)对肿瘤生长的抑制能力.在20 mg/kg的剂量下,体外测量的肿瘤体积、9天观察的瘤体重量以及动物的生存期数据都表明,Taxol,M(PTX)和FA-M(PTX)三者都能抑制SKOV3肿瘤的生长,抑制能力的顺序为Taxol相似文献   

9.
将活化的叶酸分子连接到O-羧甲基壳聚糖(O-CMCS)上.以CaCl2为交联剂,通过离子交联法制备叶酸修饰的O-CMCS纳米粒子(FCC NPs),并开展了从FCC NPs作为抗癌药物紫杉醇(PTX)载体的研究.结果表明:FCC NPs呈球形,粒子大小约190 nm,对PTX的载药量和包封率均受PTX加入量的影响.该纳米粒子对药物的释放具有较好的pH敏感性,能够增强PTX在癌细胞处的富集.同时,该纳米粒子无细胞毒性,纳米粒子表面由于叶酸的存在使其具有较好的细胞靶向性,且载药纳米粒子对癌细胞生长具有良好的抑制作用.  相似文献   

10.
以p-氨基苯乙酸(APA)和六亚甲基二异氰酸酯(HDI)为连接基团,将短链聚乙二醇单甲醚(mPEG)键合到紫杉醇(PTX)上,获得双亲型PTX前药mPEG-APA-PTX和mPEG-HDI-PTX.考察了这两种前药在自主装、体外药物释放动力学、体外细胞毒性和体内血浆清除速率等方面的表现.结果表明:两前药均能在水中自组装形成稳定的纳米颗粒,载药量高达28%;mPEG-HDI-PTX纳米颗粒在水溶液中非常稳定,细胞毒性很弱,在血液系统中清除很快,而mPEG-APA-PTX纳米颗粒在pH=7.4的环境下可缓慢释放出原药PTX,细胞毒性与临床用紫杉醇针剂Tax-ol(R)相当,体内循环时间较Taxol(R)明显延长;mPEG-APA-PTX是一种可自组装、载药量高、体内循环时间长的新型纳米前药.  相似文献   

11.
Two kinds of paclitaxel(PTX) conjugate micelles, of which one contained 25%(mass fraction) PTX [M(PTX)] and the other contained 22.5%(mass fraction) of PTX and 1.4%(mass fraction) of folate(FA)[FA-M(PTX)], were prepared for cell apoptosis and anti-tumor activity evaluation on U14 cervical cancer mouse models in comparison with 0.9%(mass fraction) saline(control) and equivalent Taxol. Seven days after tail intravenous injection of the drugs, the mice were sacrificed to measure the tumor masses. The average tumor masses were 4.26, 2.89, 2.63, and 2.17 g for the control, Taxol, M(PTX) and FA-M(PTX) groups, respectively. The inhibition rates of tumor growth calculated for the three drug groups were 32%, 38% and 49%, respectively. Flow cytometry(FC) analysis and termi- nal deoxynucleotidyl transferase(TdT)-mediated deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) assay were conducted on the cancer tissues. The cell apoptosis rates based on the FC data and the TUNEL data were 20%, 31%, 37%, 42%, and 10%, 22%, 26%, 34%, respectively, both showing statistically significant differences(P<0.05) between three drug groups and the control group, and between the FA-M(PTX) group and the other two drug groups. In conclusion, the composite FA-M(PTX) micelles can be used for U14 cervical cancer treatment.  相似文献   

12.
Composite fibers composed of poly(l-lactide)-grafted hydroxyapatite (PLA-g-HAP) nanoparticles and polylactide (PLA) matrix were prepared by electro-spinning. Environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM) were employed to investigate the morphology of the composite fibers and the distribution of PLA-g-HAP nanoparticles in the fibers, respectively. At a low content (∼4 wt%) of PLA-g-HAP, the nanoparticles dispersed uniformly in the fibers and the composite fibrous mats exhibited higher strength properties, compared with the pristine PLA fiber mats and the simple hydroxyapatite/PLA blend fiber mats. But when the content of PLA-g-HAP further increased, the nanoparticles began to aggregate, which resulted in the deterioration of the mechanical properties of the composite fiber mats. The degradation behaviors of the composite fiber mats were closely related to the content of PLA-g-HAP. At a low PLA-g-HAP content, degradation may be delayed due to the reduction of autocatalytic degradation of PLA. When PLA-g-HAP content was high, degradation rate increased because of the enhanced wettability of the composite fibers and the escape of the nanoparticles from fiber surfaces during incubation.  相似文献   

13.
Star-shaped poly(ε-caprolactone)-b-poly(ethylene oxide) amphiphilic copolymer with a tetrakis-(4-aminophenyl)-terminated porphyrin core was synthesized. Paclitaxel (PTX)-loaded polymeric micelles were prepared by the self-assembly of the star copolymer and in situ encapsulation of PTX. The fluorescent characteristic of the porphyrin moiety allowed the cellular uptake and biodistribution of the PTX-loaded micelles to be monitored by fluorescent imaging. The PTX-loaded micelles can be readily internalized by cancer cells and have a slightly higher cytotoxicity than clinic PTX injection Taxol. In vivo real-time fluorescent imaging revealed that the micelles could accumulate at tumor site via the blood circulation in tumor-bearing mice. In vivo antitumor efficacy examinations indicated that the PTX-loaded micelles had significantly superior efficacy in impeding tumor growth than Taxol and low toxicity to the living mice.  相似文献   

14.
Local application of anticancer agents prolongs the presence time and increases the concentration of drug in the target place and therefore may reduce serious side effects compared to drug systemic administration. The preparation of fibrous materials of polylactide (PLA) and polyethylene glycol (PEG) loaded with paclitaxel (PTX, 1 or 10 wt%) is presented. Scanning electron microscopy proves that PTX is homogeneously incorporated into the fibers. The addition of PEG of various molecular weights (6, 20, or 35 kDa) ensures the release of significantly higher amounts of hydrophobic PTX in a prolonged release time compared to the fibers containing PTX only. Present PLA‐PEG fibrous carriers can serve as a drug depot for PTX since they exhibit significant toxicity for cancer cell lines in several‐day experiment. They are promising for local recurrence therapy, where the initial release is efficient to kill tumor cells and continued release can prevent their subsequent proliferation.  相似文献   

15.
Fibrous blends of polyethylene terephthalate (PET) and polylactic acid (PLA) were fabricated by electrospinning (ES) from a common solvent, at concentrations of PET/PLA = 100/0, 70/30, 50/50, 30/70, and 0/100. Oriented fiber mats were studied either as-spun, or after a cold-crystallization treatment. Scanning electron microscopy of as-spun amorphous fibers showed that addition of PLA into the ES solution prevents occurrence of beads. In some compositions, two glass transitions were observed by temperature-modulated differential scanning calorimetry indicating that the two components in the ES fibers were phase separated. Thermogravimetric analysis was used to study thermal degradation at high temperatures. PLA degrades at a temperature about 100 °C lower than that of PET, and holding or cycling the blends to high temperature can result in the degradation of PLA. Degree of crystallinity was determined using DSC for as-spun and cold-crystallized ES blend fibers. The degree of crystallinity of each blend component is reduced by the presence of the other blend component, and the overall crystallinity of the blend fibers is less than that of the homopolymer fibers. Wide-angle X-ray scattering results show that oriented crystals were formed in the blended electrospun fibers collected on a rotating collector. The cold-crystallization process leads to both PET and PLA crystallizations. Oriented crystallites form even when the fiber is crystallized with its ends free to shrink.  相似文献   

16.
Biocompatible nanofibers that are capable of adapting to the physiological conditions of the human body have become increasingly important for clinical applications in recent years. Electrospun fiber mats offer particular advantages due to their large surface area and their sorption/release properties. If loaded with drugs, delivery properties can be tailored to a specific release rate. This research work focuses on poly(L-lactic acid) (PLA) and poly(ε-caprolactone) (PCL) incorporating three different model antibiotics as well as bicomponent fibers made from PLA and PCL containing the same model drugs. Tetracycline and chlorotetracycline hydrochloride, and amphotericin B were selected as model drugs and their release properties and antimicrobial effectiveness studied. The surface morphology and the average diameter of the fibers strongly depended on the individual spinning system which in turn influenced the release of the therapeutic compounds from the fibers. Tetracycline was discharged from PCL at the highest rate while amphotericin B was slowest. PCL almost completely liberated any of the drugs over time while PLA only released about 10% total. By forming bicomponent PCL–PLA fibers surface and release characteristics could be modified to fit a sensible drug delivery.  相似文献   

17.
Coelectrospun polylactide(PLA)/gelatin (GE) composite fibrous matrixes have been identified to exhibit much improved performances compared to the respective components; however, the reasons for their water contact angles decreasing to zero at proper PLA/GE ratios remain unclear. To get a deep understanding of the phenomenon, PLA and GE were coelectrospun with different PLA/GE ratios in this study. Although the resulting composite fibers were homogeneous in appearance, they were detected different microscopic structures by transmission electron mircroscope (TEM) and via morphological observations after selective removal of either PLA or GE component. Together with the results of degradation study in phosphate buffered solution, a kind of cocontinuous phase separation microstructure could be identified for the PLA(50 wt%)/GE(50 wt%) composite fibers, which also showed the water contact angle of 0°. This value was far lower than those of electrospun PLA (~123°) and GE (~42°) fibrous matrixes. The X‐ray photoelectron spectrometry (XPS) data revealed that the polar side groups of protein macromolecules have moved toward composite fiber surface with solvent evaporation during electrospinning, due to the hydrophobic interaction between PLA and GE. Then the excellent hydrophilicity of PLA(50 wt%)/GE(50 wt%) composite fibers could be suggested as the consequence of: (1) the cocontinuous phase separation structure could provide more interface and void for water molecules penetrating; and (2) the accumulation of polar groups on composite fiber surface significantly increased the surface wettability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Electrospinning of poly(3‐hydroxybutyrate) (PHB), poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), and their blends was first carried out in chloroform at 50 °C on a stationary collector. The average diameter of the as‐spun fiber from PHB and PHBV solutions decreased with increasing collection distance and increased with increasing solution concentration and applied electrical potential. In all of the spinning conditions investigated, the average diameter of the as‐spun pure fibers ranged between 1.6 and 8.8 μm. Electrospinning of PHB, PHBV, and their blends was carried out further at a fixed solution concentration of 14% w/v on a homemade rotating cylindrical collector. Well‐aligned, cross‐sectionally round fibers without beads were obtained. The average diameter of the as‐spun pure and blend fibers ranged between 2.3 and 4.0 μm. The as‐spun fiber mats appeared to be more hydrophobic than the corresponding films and much improvement in the tensile strength and the elongation at break was observed for the blend fiber mats over those of the pure fiber ones. Lastly, indirect cytotoxicity evaluation of the as‐spun pure and blend fiber mats with mouse fibroblasts (L929) indicated that these mats posed no threat to the cells. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2923–2933, 2006  相似文献   

19.
Eight compatibilizing agents were studied to investigate their effect on the quality of the interface between a phosphate glass fiber and a poly(lactic acid) (PLA) matrix. After application of the agents via dip‐coating, the fibers were Soxhlet extracted to remove any unreacted compatibilizer. To assess the interface quality, single fiber tensile tests of treated fibers and interfacial shear strengths (IFSS) of single fiber composites (SFC) were assessed. Of the agents tested, Glycerol‐2‐phosphate disodium pentahydrate (GP) and low molecular weight PLA with a sodium salt terminal group (PLA‐Na) showed the highest IFSS values, which were significantly higher than those of the control. Oligomeric PLA with a carboxylic acid end group and alendronate sodium trihydrate also showed an improvement over the control fibers. The hydrolytic degradation of these single fiber composites was studied over 7 days in water at 37 °C and a significant decrease in IFSS was observed in all cases, with the treated samples dropping to the level of the control. TGA and XPS analysis of the sized fibers showed that GP and PLA‐Na had been applied successfully to the fiber surface. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3082–3094, 2010  相似文献   

20.
李强  郭朝霞 《高分子科学》2017,35(6):713-720
Antibacterial thermoplastic polyurethane(TPU) electrospun fiber mats were prepared by adsorption of Ag nanoparticles(Ag NPs) onto TPU/3-aminopropyltriethoxysilane(APS) co-electrospun fiber mats from silver sol. The use of APS can functionalize TPU fibers with amino groups, facilitating the adsorption of Ag NPs. The effects of p H of silver sol and APS content on Ag NP adsorption and antibacterial activity were investigated. Ag NP adsorption was evidenced by TEM, XPS and TGA. Significant Ag NP adsorption occurred at p H = 3-5. The main driving force for Ag NP adsorption is electrostatic interaction between ―NH3~+ of the fibers and ―COO-derived from the ―COOH group capped on the surfaces of Ag NPs. The antibacterial activity of the Ag NP-decorated TPU/APS fiber mats was investigated using both gram-negative Escherichia coli and gram-positive Bacillus subtilis. The antibacterial rate increases with increasing APS content up to 5% where the antibacterial rates against both types of bacteria are over 99.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号