首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Lignins from different non-woody plants such as hemp (Cannabis sativa), flax (Linum usitatissimum), jute (Corchorus capsularis), sisal (Agave sisalana) and abaca (Musa textilis), commonly used for manufacturing specialty papers, were analyzed by pyrolysis-gas chromatography–mass spectrometry (Py-GC/MS) in the absence and in the presence of tetramethylammonium hydroxide (TMAH) and by Fourier-transform infrared (FTIR) spectroscopy, after alkaline isolation. Hemp and flax lignins showed a predominance of guaiacyl (1-hydroxy-2-methoxyphenyl) units, while jute, sisal and abaca lignins contained predominantly syringyl (1-hydroxy-2,6-dimethoxyphenyl) units. p-Hydroxycinnamic acids, namely p-coumaric and ferulic acids, were also found in the isolated lignins, linked by alkali-resistant ether bonds, especially in abaca and sisal lignins. The presence of the latter compounds in the isolated lignins, as well as in their respective whole fibers, was shown by pyrolysis in the presence of tetramethylammonium hydroxide (Py/TMAH), p-coumaric acid being especially abundant in abaca.  相似文献   

2.
Cultivation of sisal, a plant with a short growth cycle, is highly productive in Brazil. This work is part of extensive research in which sisal is valued. In these studies, sisal fibers are used in the preparation of bio-based composites and in the derivatization of the pulp, including posterior preparation of films. This study aimed to examine the use of sisal pulp in the production of bioethanol, which can potentially be a high efficiency process because of the cellulose content of this fiber. A previous paper addressed the hydrolysis of sisal pulp using sulfuric acid as a catalyst. In the present study, the influence of the mercerization process on the acid hydrolysis of sisal pulp was evaluated. Mercerization was achieved in a 20% wt NaOH solution, and the cellulosic pulp was suspended and vigorously mixed for 1, 2 and 3 h, at 50 °C. The previously characterized mercerized pulps were hydrolyzed (100 °C, 30% H2SO4, v/v), and the results are compared with those obtained for unmercerized pulp (described in a companion paper). The starting sample was characterized by viscometry, α-cellulose content, crystallinity index and scanning electron microscopy. During the reactions, aliquots were withdrawn, and the liquor was analyzed by HPLC. The residual pulps (non-hydrolyzed) were also characterized by the techniques described for the initial sample. The results revealed that pretreatment decreases the polyoses content as well as causes a decrease of up to 23% in the crystallinity and up to 21% in the average molar mass of cellulose after 3 h of mercerization. The mercerization process proved to be very important to achieve the final target. Under the same reaction conditions (30% and 100 °C, 6 h), the hydrolysis of mercerized pulp generated yields of up to 50% more glucose. The results of this paper will be compared with the results of subsequent studies obtained using other acids, and enzymes, as catalysts.  相似文献   

3.
The presence of 5-hydroxyguaiacyl moieties in the lignin from several plants has been assessed by Py-GC/MS. Different woody (eucalypt) and nonwoody (flax, hemp, kenaf, jute, sisal and abaca) angiosperms were selected for this study. The pyrolysis of whole fibers released lignin-derived products with p-hydroxyphenyl, guaiacyl and syringyl structures. Indeed, a series of compounds having a 5-hydroxyguaiacyl nuclei, including 3-methoxycatechol, 5-vinyl-3-methoxycatechol and 5-propenyl-3-methoxycatechol, were detected and identified in all samples, although in lower amounts than the normal guaiacyl or syringyl compounds. The analysis of the lignins isolated from the same plants also showed the same 3-methoxycatechol derivatives found after whole fiber pyrolysis. These compounds are supposed to arise from the pyrolysis of 5-hydroxyguaiacyl moieties, which are supposed to be native constituents of lignin in plants forming benzodioxane substructures.  相似文献   

4.
This paper explores the production of carboxymethylcellulose (CMC) fromseveral bleached cellulose pulps obtained from non-wood species. The chemicalcomposition (-cellulose, hemicellulose and lignin content), the degreeofswelling, viscosity, solubility in concentrated NaOH and crystallinity ofsoda/AQ cellulose pulps from abaca, jute, sisal, linen and Miscanthussinensis were determined. The pulps were carboxymethylated by one andtwo successive reaction steps in aqueous medium under identical conditions. Thedegree of substitution (DS) of CMC was found to be dependent upon the source ofthe cellulose pulp, but generally it was close to 1 with one etherificationtreatment and around 2 after the second. The molar mass of CMC was found to bedependent on the initial intrinsic viscosity of the cellulose pulp. The weightaverage molar mass of our CMCs ranged from 1.5×105 to2.8×105. Increasing the DS up to 2 improved the CMC solubility, butviscosity slightly decreased due to a slight degradation of the polymer.  相似文献   

5.
Raw and refined flax, hemp, abaca, sisal, jute and ramie fibres are dipped into N-methylmorpholine N-oxide (NMMO)–water with various contents of water and into hydroxide sodium (NaOH)–water. The swelling and dissolution mechanisms of these plant fibres are similar to those observed for cotton and wood fibres. Disintegration into rod-like fragments, ballooning followed or not by dissolution and homogeneous swelling are all observed as for wood and cotton fibres, depending on the quality of the solvent. Balloons are not typical of wood and cotton and they seem to be present in all plant fibres. Another interesting result is that the helical feature seen on the balloon membrane is not related to the microfibrillar angle. Plant fibres are easier to dissolve than wood and cotton. This is not related to the molar mass of the cellulose chain. Raw plant fibres keeping most its non-cellulosic components do not show the formation of balloons. Patrick Navard is a Member of the European Polysaccharide Network of Excellence (EPNOE)  相似文献   

6.
Enzymatic saccharification of sisal cellulosic pulp has been investigated. Brazil leads global production of lignocellulosic sisal fiber, which has high cellulose content, an important property for producing glucose via saccharification. Hence, sisal pulp can be a good alternative for use in biorefineries. Prior to enzymatic hydrolysis, the starting pulp [85 ± 2% α-cellulose, 15 ± 2% hemicelluloses, 1.2 ± 2% insoluble lignin, viscometric average molar mass (MMvis) 19,357 ± 590 g mol?1, crystallinity index (CI) 74%] was pretreated with alkaline aqueous solution (mercerization, 20 g of pulp L?1, 20% NaOH, 50 °C). The changes in the properties of the cellulosic pulp during this pretreatment were analyzed [α-cellulose content, MMvis, CI, pulp fiber dimensions, and scanning electron microscopy (SEM)]. The unmercerized and mercerized (97.4 ± 2% α-cellulose, 2.6 ± 2% hemicelluloses, 0.3 ± 0.1% insoluble lignin, MMvis 94,618 ± 300 g mol?1, CI 68%) pulps were subjected to enzymatic hydrolysis (48 h, commercial cellulase enzymes, 0.5 mL g?1 pulp); during the reactions, aliquots consisting of unreacted pulp and liquor were withdrawn from the medium at certain times and characterized (unreacted pulp: MMvis, CI, fiber dimensions, SEM; liquor: high-performance liquid chromatography). The changes in pulp properties observed during mercerization facilitated access of enzymes to cellulose chains, and the yield of the hydrolysis reaction increased from 50.2 (unmercerized pulp) to 89.0% (mercerized pulp). These initial results for enzymatic hydrolysis of sisal pulp indicate that it represents a good alternative biomass for bioethanol production.  相似文献   

7.
Usually the raw material for flax pulp production is a blend which contains fibres and shives. In order to better understanding the structure of these materials and the effects of flax pulping, X-ray diffraction and thermogravimetry analysis under air atmosphere have been used. There was a significant effect of the fibre size on the composition, crystallinity, and thermal behaviour of the flax pulps. On the other hand, data obtained from thermogravimetric analysis have been modelled on the basis of two cellulose types characterized by different crystallinity levels, using kinetics equations based on the nucleation concept. As a result of these simulations, composition of the samples, pulp crystallinity and the proportion of amorphous cellulose are calculated.  相似文献   

8.
The accessibility of cellulose as determined by dye adsorption   总被引:2,自引:0,他引:2  
The accessibility of cotton cellulose was determined after it had been mercerized both in the slack and tension states. Mercerized samples were either dried or retained in the undried state before dyeing to determine their accessibilities by the adsorption of Direct Blue 1. Samples were characterized also by techniques such as moisture adsorption, water retention value (WRV) and X-ray analysis. It appeared that the crystallinity of cotton mercerized under tension was slightly increased during dyeing. Dye adsorption increased in the order nonmercerized <tension-mercerized <slack-mercerized. Products mercerized and not dried adsorbed more dye than counterparts given the same swelling treatment but dried after mercerization. The presence of dye in a sample mercerized and undried before dyeing did not affect its crystallinity. From both the dye adsorption and WRV data it was concluded that structural collapse of the fibre is greater for the slack-mercerized product than its tension-mercerized counterpart after it is dried. It was also concluded from dye adsorption and water adsorption data that about 34% of the internal surface of cotton and mercerized cotton, available for water adsorption, is inaccessible to Direct Blue 1.  相似文献   

9.
The present work is inserted into the broad context of the upgrading of lignocellulosic fibers. Sisal was chosen in the present study because more than 50% of the world’s sisal is cultivated in Brazil, it has a short life cycle and its fiber has a high cellulose content. Specifically, in the present study, the subject addressed was the hydrolysis of the sisal pulp, using sulfuric acid as the catalyst. To assess the influence of parameters such as the concentration of the sulfuric acid and the temperature during this process, the pulp was hydrolyzed with various concentrations of sulfuric acid (30–50%) at 70 °C and with 30% acid (v/v) at various temperatures (60–100 °C). During hydrolysis, aliquots were withdrawn from the reaction media, and the solid (non-hydrolyzed pulp) was separated from the liquid (liquor) by filtering each aliquot. The sugar composition of the liquor was analyzed by HPLC, and the non-hydrolyzed pulps were characterized by viscometry (average molar mass), and X-ray diffraction (crystallinity). The results support the following conclusions: acid hydrolysis using 30% H2SO4 at 100 °C can produce sisal microcrystalline cellulose and the conditions that led to the largest glucose yield and lowest decomposition rate were 50% H2SO4 at 70 °C. In summary, the study of sisal pulp hydrolysis using concentrated acid showed that certain conditions are suitable for high recovery of xylose and good yield of glucose. Moreover, the unreacted cellulose can be targeted for different applications in bio-based materials. A kinetic study based on the glucose yield was performed for all reaction conditions using the kinetic model proposed by Saeman. The results showed that the model adjusted to all 30–35% H2SO4 reactions but not to greater concentrations of sulfuric acid. The present study is part of an ongoing research program, and the results reported here will be used as a comparison against the results obtained when using treated sisal pulp as the starting material.  相似文献   

10.
The reactivity of dissolving pulp was experimentally determined in termsof residual cellulose in viscose. The correlations between 11 chemicalproperties of pulp and filter values and residual cellulose contents of viscosewere then investigated by multivariate data analysis. Both the viscose filtervalue and the residual cellulose were well modelled from the 11 propertiesby partial least squares regression. The results show that pulps with highacetone extractable fractions, high magnesium contents, low alkali resistanceand low viscosity, gave low viscose filter values and low residual cellulosecontents. Pulps with low residual cellulose contents also had low carboxylgroupcontents and low polydispersity. The results are interpreted as that in pulpwith high reactivity, the hemicellulose content is low and that the cellulosechains are shorter and more soluble in alkali. An explanation of the positiveeffect from the high extractive content is that the extractives facilitate thediffusion of carbon disulfide. A principal component analysis of CP/MAS13C-NMR spectral data of six pulp samples showed that differences inreactivity between the pulps could be explained by variations in the hydrogenbonds in the cellulose and/or changes in the glucosidic bonds. In a separatestudy electron beam processing enhanced the reactivity, i.e. lowered theresidual cellulose content, of the investigated pulps. The magnitude of theelectron dose, within the tested range (5.4–23.7 kGy), didnotseem to be important, but the reactivity within pulp sheets tended to be ratherinhomogeneous.  相似文献   

11.
In this study the effect of the mercerization degree on the water retention value (WRV) and tensile properties of compression molded sulphite dissolving pulp was evaluated. The pulp was treated with 9, 10, or 11 % aqueous NaOH solution for 1 h before compression molding. To study the time dependence of mercerization the pulp was treated with 12 wt% aqueous NaOH for 1, 6 or 48 h. The cellulose I and II contents of the biocomposites were determined by solid state cross polarization/magic angle spinning carbon 13 nuclear magnetic resonance (CP/MAS 13C NMR) spectroscopy. By spectral fitting of the C6 and C1 region the cellulose I and II content, respectively, could be determined. Mercerization decreased the total crystallinity (sum of cellulose I and cellulose II content) and it was not possible to convert all cellulose I to cellulose II in the NaOH range investigated. Neither increased the conversion significantly with 12 wt% NaOH at longer treatment times. The slowdown of the cellulose I conversion was suggested as being the result from the formation of cellulose II as a consequence of coalescence of anti-parallel surfaces of neighboring fibrils (Blackwell et al. in Tappi 61:71–72, 1978; Revol and Goring in J Appl Polym Sci 26:1275–1282, 1981; Okano and Sarko in J Appl Polym Sci 30:325–332, 1985). Compression molding of the partially mercerized dissolving pulps yielded biocomposites with tensile properties that could be correlated to the decrease in cellulose I content in the pulps. Mercerization introduces cellulose II and disordered cellulose and lowered the total crystallinity reflected as higher water sensitivity (higher WRV values) and poorer stiffness of the mercerized biocomposites.  相似文献   

12.
The reactivity of dissolving pulps towards derivatization or dissolution is a crucial quality parameter and is mainly determined by the accessibility of the hydroxyl groups. When dissolving pulps are produced from paper-grade pulps by cold caustic extraction (CCE), their reactivity is often inferior as compared to commercial prehydrolysis kraft dissolving pulps. It was hypothesized that pulp reactivity can be enhanced by the introduction of small amounts of substituents to facilitate interchain accessibility. In this study, CCE-treated Eucalyptus globulus kraft paper pulp was subjected to TEMPO-mediated oxidation to initiate partial oxidation of the C6-hydroxyl groups to carboxyl groups. The effect of this pulp modification on the reactivity towards xanthation and the subsequent dissolution in diluted aqueous alkali solution (viscose process) as well as the dissolution in complexing and non-complexing solvents, respectively, was thoroughly examined. The results revealed that the oxidized pulps rich in C6-carboxylate groups impeded the xanthation reaction obviously because of the reduced availability of hydroxyl groups. When N-methylmorpholine-N-oxide monohydrate was used as a direct solvent, a very high content of C6-carboxylate groups was found to reduce the solubility of the pulp fibers as less hydrogen bonds can be formed with NMMO·H2O. In the case of dissolution in the complexing solvent cupriethylenediamine, the dissolution mechanism of cellulose was not deteriorated by the high content of C6-carboxylate groups. Instead, the oxidation procedure increased the hydrophilic character and the swelling capacity of the outer cell wall layers allowed homogeneous dissolution.  相似文献   

13.
The natural fibers such as jute, coir, hemp, sisal etc. are randomly used as reinforcements for composite materials because of its various advantages such as low cost, low densities, low energy consumption over conventional fibers. In addition, they are renewable as well as biodegradable, and indeed wide varieties of fibers are locally available. In this study, glass–jute fiber reinforced polymer composite is fabricated, and the mechanical properties such as tensile, flexural and impact behavior are investigated. The materials selected for the studies were jute fiber and glass fiber as the reinforcement and epoxy resin as the matrix. The hand lay‐out technique was used to fabricate these composites. Fractured surface were comprehensively examined in scanning electron microscope (SEM) to determine the microscopic fracture mode. A numerical procedure based on the finite element method was then applied to evaluate the overall behavior of this composite using the experimentally applied load. Results showed that by incorporating the optimum amount of jute fibers, the overall strength of glass fiber reinforced composite can be increased and cost saving of more than 30% can be achieved. It can thus be inferred that jute fiber can be a very potential candidate in making of composites, especially for partial replacement of high‐cost glass fibers for low load bearing applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The Young's modulus of a microcrystalline cellulose   总被引:3,自引:0,他引:3  
This research is concerned with an investigation into the determination of the micromechanical properties of particulate form of cellulose; namel microcr stalline cellulose. Using the technique of Raman spectroscop the shift in the 1095cm–1 Raman band, characteristic of cellulose, with strain is monitored and compared to the deformation of natural cellulose fibres (flax and hemp). From the values of the shift rate of the 1095cm–1 band for flax and hemp and the experimentally-determined value for microcrystalline cellulose the value for the Young's modulus of microcrystalline cellulose was estimated to be 25±4GPa. It has been shown that this value is consistent with the measured degree of crystallinity of microcrystalline cellulose. Theoretical modelling has also enabled the Young's modulus for compacted microcrystalline cellulose to be determined for fibres in either 2-D in-plane and 3-D arrangements. These values have been show to be consistent with recent direct measurements of the modulus of compacted material.  相似文献   

15.
Summary : Pulp reactivity is a kinetic term and is always connected with a certain derivatization process. The quality and hence the market value of the pulp is determined by such characteristics as α- cellulose content, solubility, brightness, ash content, as well as the amount of soluble material in dichloromethane. However, solubility data, especially S18 and S10 values do not characterise dissolving pulp reactivity. These are indicative of pulp solubility and provide some information regarding losses of material during pulp processing. One way by which the pulp reactivity for viscose making can be characterised is the investigation of the mercerisation step. Following the mercerisation kinetics by help of the molecular weight distribution of cellulose II the behaviour especially of the high molecular weight cellulose gives information regarding the accessibility and therefore, about the reactivity of the pulp aside from losses in low molecular weight cellulose. This behaviour will be shown on different pulps and the physicochemical background will be discussed in relation to results obtained from wide angle X-ray scattering and Raman investigations. The influence of the behaviour of the pulp during mercerising on the viscose process, and the molecular weight distribution of the viscose including the distribution of the xanthogenate groups along the chain was investigated and will also be discussed.  相似文献   

16.
FT Raman spectroscopy and micro spectroscopy were used for the investigation of cellulose, cellulose derivatives and cellulosic plant fibres. Lattice structures of cellulose, polymorphic modifications I and II, as well as amorphous structure, were clearly identified by means of FT Raman vibrational spectra. Chemometric models were developed utilizing univariate calibration as well as methods of multivariate data analyses of FT Raman spectral data for the fast prediction of cellulose properties. Cellulose properties like the degree of crystallinity XcRaman, the degree of substitution DSCMC, DSAC and cellulose reactivity were determined. In situ/ in vivo FT Raman micro spectroscopy was used for the characterization of cellulose structures of flax and hemp fibres. Orientational and stress dependent FT Raman experiments were carried out.  相似文献   

17.
13C CPMAS NMR investigations of cellulose polymorphs in different pulps   总被引:2,自引:0,他引:2  
In order to obtain information about the crystallinity and polymorphs of cellulose, and the occurrence of hemicelluloses in pulp fibers, wood cellulose, bacterial cellulose, cotton linters, viscose, and celluloses in different pulps were investigated by solid state 13C CPMAS NMR spectroscopy. A mixed softwood kraft pulp and a dissolving-grade pulp were treated under strongly alkaline and acidic conditions and the effect on cellulose crystallinity was studied. The presence of different crystalline polymorphs of cellulose and the amounts of hemicelluloses are considered.  相似文献   

18.
Surface properties of bleached kraft pulps were evaluated before and after recycling, and after a series of chemical treatments designed to improve and/or modify the pulp characteristics. The surface free energy characteristics of the pulps were determined using the Wilhelmy technique, and ESCA and ATR-FTIR methods were used to evaluate the chemical composition of the surfaces of the pulp fibers. In general rather small changes were noted at the fiber surfaces with recycling and chemical treatment. Recycling tended to increase the acid component and decrease the base component of the surface free energy of the pulps. This could result from exposure of carboxyl groups from hemicelluloses and/or from oxidized layers from the bleaching process. ESCA analyses also indicated increased carboxyl concentration at the surfaces of the recycled fibers. Although treatment with aqueous bases and organic solvents tended to increase the hydroxyl content on the surface of recycled pulps, the chemical treatments were not beneficial to pulp quality. AFM and SEM of fiber and fine surfaces of kraft pulps revealed that the fines fraction was altered to a much greater extent with recycling. Although recycled fibers appeared to have improved wettability, these small changes in the surface characteristics do not appear to play the dominant role in the characteristics of recycled pulps. Recycling did not change the crystallinity of whole pulps, but it increased the crystallinity of the fines fraction. The increase in the crystallinity of the fines fraction and the reduction in the water retention value (WRV) and the bulk carboxyl content (xylan) of the recycled pulps, as noted in Part I of this paper, appear to play the predominant role in determining the characteristics of recycled pulps. It appears that the loss of the hemicelluloses in the bulk of the fiber with recycling is much more important for internal fibrillation than the apparent small increase of hemicelluloses at the surface of recycled fibers.  相似文献   

19.
The supramolecular architecture and the morphological structure of cellulose play an important role in its accessibility. In order to evaluate the effect of the crystalline form of organization on the accessibility, we selected cellulosic materials with significant variations in the aforementioned characteristics. The assessment of the accessibility of cellulosic materials was performed experimentally through a water vapor sorption method. The kinetics and the thermodynamic parameters of water vapor sorption process were determined, and a correlation between the Flory–Huggins interaction parameters and the crystallinity index was derived. We concluded that the allomorph involving the most accessible crystal surfaces and amorphous regions was Cellulose II. The correlation of the accessibility values with those of the crystallinity index allowed us to evaluate the accessibility of the allomorphic forms of cellulose at different crystallinity indexes. The obtained experimental data allowed us to quantify the accessibility for crystal surfaces and amorphous regions of the different allomorphs in the order Cellulose II (38%) > Cellulose I (24%) > Cellulose III (10%).  相似文献   

20.
The development of efficient process steps to convert paper-grade to dissolving pulps was investigated as part of the work programme to improve the process economics. The challenge of pulp refinement comprises the selective removal of hemicelluloses and the precise adjustment of the pulp viscosity, while maintaining the reactivity of the pulp as required for viscose application. The purpose of this study was to investigate the effects of various enzyme treatments on a commercial oxygen-delignified Eucalyptus globulus paper-grade kraft pulp in the course of a total chlorine free bleaching sequence in combination with refining techniques following the principle of Modified Kraft Cooking (Sixta et al. 2007). The objectives were to assess its applicability as viscose pulp besides the reduction of chemical consumption in alkaline and ozone bleaching steps by means of xylanase pre-treatment and the controlled adjustment of final pulp viscosity utilizing endoglucanase post-treatment. Xylanase pre-treatment combined with cold caustic extraction at reduced alkalinity efficiently removed the hemicelluloses from the pulp and clearly increased the pulp brightness by extensive removal of hexenuronic acid side chains. The xylanase pre-treated pulp showed increased reactivity towards xanthation and high viscose dope quality in terms of particle content. The dependence of cellulose chain scission on the applied endoglucanase concentration was analyzed in detail, and this allowed precise viscosity reduction as well as reactivity increase. The differently treated pulps, with and without xylanase pre-treatment, were of very narrow molecular weight distribution and the quality of the spun fibers were very similar to those viscose fibers from commercial dissolving pulps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号