首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid-state 13C NMR spectroscopy was used to determine the degree of cellulose crystallinity (CrI) in kraft, flow-through kraft and polysulphide–anthraquinone (PS–AQ) pulps of pine and birch containing various amounts of hemicelluloses. The applicability of acid hydrolysis and the purely spectroscopic proton spin-relaxation based spectral edition (PSRE) method to remove the interfering hemicellulose signals prior to the determination of CrI were also compared. For softwood pulps, the spectroscopic removal of hemicelluloses by PSRE was found to be more efficient than the removal of hemicelluloses by acid hydrolysis. In addition to that, the PSRE method also provides information on the associations between cellulose and hemicelluloses. On the basis of the incomplete removal of xylan from the cellulose subspectra by PSRE, the deposition of xylan on cellulose fibrils and therefore an ordered ultrastructure of xylan in birch pulps was suggested. The ordered structure of xylan in birch pulps was also supported by the observed change of xylan conformation after regeneration. Similarly, glucomannan in pine pulps may have an ordered structure. According to the 13C CPMAS measurements conducted after acid hydrolysis, the degree of cellulose crystallinity was found to be slightly lower in birch pulps than in the pine pulps. Any significant differences in cellulose crystallinity were not found between the pulps obtained by the various pulping methods. Only in pine PS–AQ pulp, the degree of cellulose crystallinity may be slightly lower than in the kraft pulps containing less hemicelluloses.  相似文献   

2.
Enzymatic saccharification of sisal cellulosic pulp has been investigated. Brazil leads global production of lignocellulosic sisal fiber, which has high cellulose content, an important property for producing glucose via saccharification. Hence, sisal pulp can be a good alternative for use in biorefineries. Prior to enzymatic hydrolysis, the starting pulp [85 ± 2% α-cellulose, 15 ± 2% hemicelluloses, 1.2 ± 2% insoluble lignin, viscometric average molar mass (MMvis) 19,357 ± 590 g mol?1, crystallinity index (CI) 74%] was pretreated with alkaline aqueous solution (mercerization, 20 g of pulp L?1, 20% NaOH, 50 °C). The changes in the properties of the cellulosic pulp during this pretreatment were analyzed [α-cellulose content, MMvis, CI, pulp fiber dimensions, and scanning electron microscopy (SEM)]. The unmercerized and mercerized (97.4 ± 2% α-cellulose, 2.6 ± 2% hemicelluloses, 0.3 ± 0.1% insoluble lignin, MMvis 94,618 ± 300 g mol?1, CI 68%) pulps were subjected to enzymatic hydrolysis (48 h, commercial cellulase enzymes, 0.5 mL g?1 pulp); during the reactions, aliquots consisting of unreacted pulp and liquor were withdrawn from the medium at certain times and characterized (unreacted pulp: MMvis, CI, fiber dimensions, SEM; liquor: high-performance liquid chromatography). The changes in pulp properties observed during mercerization facilitated access of enzymes to cellulose chains, and the yield of the hydrolysis reaction increased from 50.2 (unmercerized pulp) to 89.0% (mercerized pulp). These initial results for enzymatic hydrolysis of sisal pulp indicate that it represents a good alternative biomass for bioethanol production.  相似文献   

3.
The dependence of crystalline structure and optical properties of pulp on anthraquinone (AQ) added to the soda process at different cooking times was determined in this study. Wheat (Triticum aestevum L.) straw was used as the raw material for pulp. Soda and soda-AQ processes were selected for pulping at 80 min and 120 min. The soda-AQ process improved the yield and viscosity of pulp delignification ratio for pulping in comparison with the soda process. Crystallinity of pulp samples decreased by adding anthraquinone to the soda process because of stabilized less ordered cellulose and amorphous hemicelluloses in pulp. It was determined that crystallinity of pulp samples decreased with longer cooking time, from 80 min to 120 min, in both soda and soda-AQ processes. Monoclinic structure was dominant in pulp samples; however, the triclinic structure ratio increased in both soda and soda-AQ processes compared to raw material. It was found that brightness and lightness values in pulp samples decreased when using anthraquinone depending on the changes of the crystalline structure.  相似文献   

4.
Four different spruce sulphite pulp samples were used for the preparation of carboxymethylcellulose (CMC). The characteristics of the unreacted fibre and particle residuals obtained in the CMC-preparation were used to establish a correlation between the hemicellulose in the pulp and the intrinsic viscosity, i.e.,␣cellulose chain length and the occurence of unreacted residuals. It was shown that the residual particles in the CMC consisted of fibres, fibre fractions and gel particles of different degrees of substitution. The results suggested that pulps with long cellulose chains, i.e., pulps with high intrinsic viscosities, resulted in particles that were more substituted and more swollen. These pulps also resulted in more substituted hemicelluloses in the CMC and more substituted residuals. It was also suggested that galactoglucomannan in the cellulose pulps is favourable for the swelling which results in more substituted hemicelluloses in the CMC and more swollen residuals. The amount of residuals was influenced mainly by the characteristics of the cellulose in the pulp. It is therefore believed that a combination of high viscosity and a suitable combination of hemicelluloses is the most favourable way of eliminating the occurrence of undissolved residuals in CMC.  相似文献   

5.
In this study, the importance of hemicellulose content and structure in chemical pulps on the property relationships in compression molded wood pulp biocomposites is examined. Three different softwood pulps are compared; an acid sulfite dissolving grade pulp with high cellulose purity, an acid sulfite paper grade pulp and a paper grade kraft pulp, the latter two both containing higher amounts of hemicelluloses. Biocomposites based the acid sulfite pulps exhibit twice as high Young’s modulus as the composite based on paper grade kraft pulp, 11–12 and 6 GPa, respectively, and the explanation is most likely the difference in beating response of the pulps. Also the water retention value (WRV) is similarly low for the two molded sulfite pulps (0.5 g/g) as compared to the molded kraft pulp (0.9 g/g). The carbohydrate composition is determined by neutral sugar analysis and average molar masses by SEC. The cellulose supramolecular structure (cellulose fibril aggregation) is studied by solid state CP/MAS 13C-NMR and two forms of hemicellulose are assigned. During compression molding, cellulose fibril aggregation occurs to higher extent in the acid sulfite pulps as compared to the kraft pulp. In conclusion, the most important observation from this study is that the difference in hemicellulose content and structure seems to affect the aggregation behaviour and WRV of the investigated biocomposites.  相似文献   

6.

Millions of tons of fruit waste are generated globally every year from agricultural residues, which makes it essential to find alternative uses to increase their aggregate value and reduce their environmental impact. The present study aimed to explore pineapple peel as an alternative source of cellulose by evaluating its chemical composition and physical properties, which are essential for applications. A sequence of chlorine-free treatments was applied to purify the cellulose by removing noncellulosic components in the fresh pineapple peels. The cellulosic pulp was characterized regarding its chemical composition and characterized by Nuclear Magnetic Resonance (13C NMR), X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis to determine crystallinity, structural properties, morphology, and thermal characteristics, respectively. The results revealed that the pineapple peel amorphous segments containing hemicelluloses and lignin were extensively removed with increasing chemical treatment steps, leading to increased purity, crystallinity index, and thermal stability of the extracted cellulose pulps. The maximum thermal degradation (150 °C) and crystallinity index (80.9%) were determined for the cellulosic material obtained from the second bleaching (2B) step. The cellulose content increased from 24% in the starting material (fresh pineapple peel) to 80.9% in the bleached cellulose (2B). These results indicate that the extracted cellulose from pineapple peel has characteristic for applications such as the production of cellulose nanocrystals due to the high crystallinity.

Graphical abstract
  相似文献   

7.
High purity cellulose from wood is an important raw material for many applications such as cellulosic fibers, films or the manufacture of various cellulose acetate products. Hitherto, multi-step refining processes are needed for an efficient hemicellulose removal, most of them suffering from severe cellulose losses. Recently, a novel method for producing high purity cellulose from bleached paper grade birch kraft pulp was presented. In this so called IONCELL process, hemicelluloses are extracted by an ionic liquid–water mixture and both fractions can be recovered without yield losses or polymer degradation. Herein, it is demonstrated that bleached Eucalyptus urograndis kraft pulp can be refined to high purity acetate grade pulp via the IONCELL process. The hemicellulose content could be reduced from initial 16.6 to 2.4 wt% while persevering the cellulose I crystal form by using an optimized 1-ethyl-3-methylimidazolium dimethylphosphate-water mixture as the extraction medium. The degree of polymerization was then reduced by a sulfuric acid treatment for subsequent acetylation of the pulp, resulting in a final hemicellulose content of 2.2 wt%. When pre-treating the pulp enzymatically with endoxylanase, the final hemicellulose content could be reduced even to 1.7 wt%. For comparison, the eucalyptus kraft pulp was also subjected to cold caustic extraction and the same subsequent acid treatment which led to 3.9 wt% of residual hemicelluloses. The performance in acetylation of all produced pulps was tested and compared to commercial acetate grade pulp. The endoxylanase-IONCELL-treated pulp showed superior properties. Thus, an ecologically and economically efficient alternative for the production of highest value cellulose pulp is presented.  相似文献   

8.
To investigate changes on the physicochemical characteristics of wheat straw by mechanical ultrafine grinding, wheat straw powders of four different particle sizes and distributions were produced using a sieve-based Retsch ZM100 grind mill and CJM-SY-B ultrafine vibration grind mill. Changes on the microstructure and physicochemical characteristics of the different powders were assessed by scanning electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and relevant standard laboratory analysis methods. Ultrafine grinding reduced the crystallite size and crystallinity of the wheat straw. New surfaces were exposed on the ultrafine powder with high levels of cellulose/hemicelluloses components but there was no apparent change in chemical structure. Wheat straw powders were smaller in size but had a higher bulk density (from 0.19 to 0.54 g/mL) and angle of repose (from 46.02° to 55.61°) and slide (from 37.26° to 41.00°). The hydration properties (water-holding capacity and swelling capacity) decreased with reduction in particle size of the wheat straw. Both the sieve-based and ultrafine powder exhibited a good ability to remove Pb2+ and Cd2+ and there was marginal improvement when using the ultrafine powder. The thermal stability of the ultrafine powder measured by thermogravimetric analysis decreased significantly because of the low cellulose crystallinity.  相似文献   

9.
The hierarchic organization of cellulose fibrils (microfibrils) was investigated in holocellulose, sulphite pulp and kraft pulp using TEM, XRD, ED and FTIR. There were remarkable differences in both the fibril structure and fibril aggregation between the samples. TEM observations revealed more intimately associated fibrils in the kraft pulp compared to the sulphite pulp and the holocellulose, results in agreement with previous CP/MAS 13C-NMR data [Hult E.-L. et al. (2002) Holzforschung 56: 231–234]. Furthermore, the cellulose crystallinity was higher in the kraft pulp sample. With respect to the cellulose I and I allomorphs, these samples were controversial when different analytical techniques were applied. Due to the small fibril size and the low degree of order of cellulose in these samples, the concept of crystalline triclinic and monoclinic components as determined by diffraction analysis may not be adequate. Instead the fibril can be regarded to have different degrees of lateral order (including paracrystalline ordering) that can be reoriented to I type conformation and packing upon pulping.  相似文献   

10.
Research has intensified in recent years on organic solvent pulping processes to supplement or replace conventional pulping processes. One of the main problems with organosolv pulps is the inferior tear strength compared to kraft pulps. An investigation of the properties of two acidic (acetic acid organosolv and acid sulfite) and one basic white spruce pulp (kraft) was carried out to determine factors affecting differences in tear strength. Properties evaluated were lignin and sugar content, mineral composition, ESCA oxygen-to-carbon ratios, acid-base characteristics, water wettabilities, degree of polymerization and crystallinity of cellulose, fiber length and coarseness, and physical properties of the various pulps. Differences in tear strength have been attributed to degradation and changes in the cellulose structure, the hemicellulose-lignin matrix in which the degree of polymerization of hemicelluloses plays the most important role in low yield pulps, and finally, the bonding capacity of the fiber surfaces.  相似文献   

11.
The structure of -(14)-xylan, both in isolated form and as a component of bleached birch kraft pulp, was studied employing CP/MAS 13C NMR spectroscopy. Bleached birch kraft pulp was treated with xylanases or alkali in order to distinguish between accessible and inaccessible xylan. In xylan which was alkali-extracted from bleached birch kraft pulp, the relative contents of xylose and 4-O-methylglucuronic acid were 99.4 and 0.6 weight %, respectively, and the degree of polymerization was 70. The supermolecular structure of xylan is very sensitive to the surrounding environment. All extracted xylan chains were accessible to water and methanol and the solvent molecules easily exchanged. In bleached birch kraft pulp, cellulose fibrils interact with xylan chains, causing these to adopt a conformation similar to one of the configurations observed for dry xylan. In birch pulp, about 1/3 of the xylan was found to be accessible to digestion by xylanases or extraction with 5% w/w potassium hydroxide (aq). A signal at 81.7ppm in the C-4 region of the CP/MAS 13C NMR spectrum of bleached birch kraft pulp originated from xylan at the accessible fibril surfaces. A portion of a broad signal at 83.5ppm reflected inaccessible xylan, which is probably present as co-aggregates with cellulose fibril aggregates.  相似文献   

12.
Polymorphs I and II of phenylpyruvic acid are obtained as mixtures of both crystal forms or relatively pure crystals, from different solvents. Polymorph I is more stable than polymorph II at room temperature. Spectral characteristics of these polymorphs are discussed on the basis of IR, Raman and solid state 13C NMR spectra. Also, the assignment of the IR features observed in the 1600–1700 cm−1 region is re-investigated by referring to the spectra of heavy-atom substituted derivatives. It is suggested that the C=O stretching band is split by the crystal field for both polymorphs.  相似文献   

13.
The role of the cellulose ultrastructure on the relationship between cellulase binding and activity is not clear yet. In this article, a quartz crystal microbalance with dissipation (QCM-D) was employed to monitor the interactions between a given cellulase and the cellulose substrates with varied polymorphs of pure cellulose I and II and the intermediate state (I/II). Initially, cellulose nanocrystals (CNCs) with polymorphs of cellulose I, I/II and II were prepared and spin-coated on QCM sensors. The cellulose substrates’ crystallinity degree was examined by XRD, and morphology was detected by AFM. Then, a commercial cellulase from Trichoderma reesei was used to test the adsorption and hydrolysis of cellulose substrates with polymorphs of I, I/II and II, respectively. The results revealed that in the enzyme adsorption and desorption process at a temperature of 15 °C, CNC-II had the lowest adsorption capacity with a total adsorption mass of 179 ng cm?2 but the highest reversible binding ratio of 33.7%; for comparison, the values were 235 ng cm?2 versus 25.6% and 207 ng cm?2 versus 26.9% for CNC-I and -I/II, respectively. And the conformation of adlayers on CNC-I, -I/II and -II derived from the QCM data became softer and softer in turn. On the other hand, CNC-II exhibited the best enzymatic hydrolytic ability among three substrates when enzymatic hydrolysis experiments were conducted at 45 °C. The results indicated that polymorphic conversion from I to II changes the affinity between the enzyme and cellulose surface; CNC-II has the lowest affinity to the enzyme, but the softer conformation of the adsorbed enzyme layer, and the more reversible adsorption may facilitate its hydrolytic activity. This article gives a perspective from the adsorption dynamics and conformation of the adsorbed enzyme layer, helping to understand the superior hydrolytic activity of cellulose with polymorph II. Thus, there is a potential of polymorphic conversion in the reduction of enzyme dosage and cost in the enzymatic hydrolysis process.  相似文献   

14.
Historic lime (Tilia cordata Mill.) wood samples, differing by their provenance, conservation status and period have been investigated by solid-state carbon-13 cross polarization magic angle sample spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy. Structural and chemical modifications were assessed by comparing the historic samples with a reference wood sample. The conventional NMR measurements followed by the 13C resonance integral intensities of the wood samples have been carried out in order to acquire information of the chemical changes due to the natural ageing process taking place over the years. The main results concern the decrease of the carbohydrates moiety, especially the decrease of the hemicelluloses and amorphous cellulose signals, while the signals for aliphatic and methoxyl carbons from lignin present and increase of the intensity up to 120 years then start to decrease. At the same time a slight widening of the amorphous carbohydrate signals was observed, which may evidence the occurring of some chemical rearrangements, with the formation of new chemical species. These lead in the 13C NMR spectra to the line broadening of the signals induced by their chemical shifts dispersion.  相似文献   

15.
Enhancing removal of hemicelluloses from cellulosic fibers is of decisive importance for producing high-purity cellulose. In this study, poly(ethylene glycol) (PEG) was added to a cold caustic extraction (CCE) process to promote removal of hemicelluloses from a softwood sulfite dissolving pulp. The content of hemicelluloses was considerably decreased from 11.4 % in the original sample to 5.3 % in the PEG/CCE-treated sample under the studied conditions. This positive result of PEG addition can be explained by (1) improved inward penetration and diffusion of NaOH into the fiber structure and outward diffusion of hemicelluloses from the fiber structure to the bulk phase, and (2) enhanced fiber swelling due to inclusion of PEG in the fiber walls and improved NaOH diffusion. Moreover, the effects of PEG/CCE treatment on the distribution of hemicelluloses in the fiber walls and the molecular weight of the residual hemicelluloses in the resulting pulp were investigated.  相似文献   

16.
Different paper grade pulps were extracted with nitren in order to produce dissolving pulps and polymeric xylan. The yield and molecular structure of the extracted pulps were investigated by carbohydrate analysis and HPSEC combined with fluorescence labelling in order to additionally monitor the carbonyl and carboxyl group profiles of the pulps. The supramolecular structure of selected pulps were further studied by solid state 13C-CP/MAS-NMR and wide-angle X-ray scattering (WAXS). These supramolecular data of nitren extracted pulps were compared to samples extracted with NaOH and a conventional dissolving pulp in order to classify the properties of nitren extracted pulps. Nitren extraction results in selective xylan removal without noticeable degradation or oxidation of the cellulose fraction. The resulting dissolving pulps have high molar masses, a narrow molar mass distribution and the typical contents of carbonyl and carboxyl groups. The supramolecular structure of cellulose is less affected by nitren compared to strong NaOH, and the resultant dissolving pulps still have the cellulose I structure. All laboratories are members of the European polysaccharide network of excellence EPNOE.  相似文献   

17.
In this study we employed Size Exclusion Chromatography (SEC) and X-ray diffraction to monitor the molecular weight and crystallinity of bacterial cellulose I and II (BC-I, BC-II) and microcrystalline cellulose (MCC) digested with three “pure” Thermobifida fusca cellulases (Cel6A, Cel6B, and Cel9A ). For each enzyme, cellulose crystallinity was found to increase modestly with treatment time. The digestion rate of BC-II was higher than that of BC-I for Cel6A and Cel9A, both endocellulases. SEC results show that the endocellulases create a very rapid decrease in cellulose molecular weight while a slower molecular weight loss was observed with Cel6B, an exocellulase. This work suggests that conversion of native cellulose I to cellulose II by mercerization may beneficially impact the rate of sugar release by cellulases from biomass. In general, lower conversion rates are observed for MCC compared to BC, possibly due to a higher initial crystallinity for MCC. Surface area effects may also be important.  相似文献   

18.
In this study the effect of the mercerization degree on the water retention value (WRV) and tensile properties of compression molded sulphite dissolving pulp was evaluated. The pulp was treated with 9, 10, or 11 % aqueous NaOH solution for 1 h before compression molding. To study the time dependence of mercerization the pulp was treated with 12 wt% aqueous NaOH for 1, 6 or 48 h. The cellulose I and II contents of the biocomposites were determined by solid state cross polarization/magic angle spinning carbon 13 nuclear magnetic resonance (CP/MAS 13C NMR) spectroscopy. By spectral fitting of the C6 and C1 region the cellulose I and II content, respectively, could be determined. Mercerization decreased the total crystallinity (sum of cellulose I and cellulose II content) and it was not possible to convert all cellulose I to cellulose II in the NaOH range investigated. Neither increased the conversion significantly with 12 wt% NaOH at longer treatment times. The slowdown of the cellulose I conversion was suggested as being the result from the formation of cellulose II as a consequence of coalescence of anti-parallel surfaces of neighboring fibrils (Blackwell et al. in Tappi 61:71–72, 1978; Revol and Goring in J Appl Polym Sci 26:1275–1282, 1981; Okano and Sarko in J Appl Polym Sci 30:325–332, 1985). Compression molding of the partially mercerized dissolving pulps yielded biocomposites with tensile properties that could be correlated to the decrease in cellulose I content in the pulps. Mercerization introduces cellulose II and disordered cellulose and lowered the total crystallinity reflected as higher water sensitivity (higher WRV values) and poorer stiffness of the mercerized biocomposites.  相似文献   

19.
Summary: Three different cellulosic substrata, like microcrystalline cellulose, cotton cellulose and spruce dissolving pulp, were chosen for biodegradation. The kinetics of the enzymatic hydrolysis of these celluloses by Trichoderma reesei, has been investigated. The experiments proved the fact that both the morphological structure and the crystalline one are crucial to the process and the ratio of the reactions. In addition, in order to obtain the most accessible cellulose substratum it was studied the biodegradation of cellulose allomorphs of spruce dissolving pulp. The insoluble cellulose fraction remaining after enzymatic hydrolysis was examined by X-ray diffraction method and it was established the degree of crystallinity and the average crystallite size. The enzymatic degradation is also proved by the decrease in the degree of polymerization of hydrolyzed samples.  相似文献   

20.
Dissolving pulp was solubilized in 9% NaOH, resulting in 32% solubilization of the pulp. Most of the pulp hemicelluloses were solubilized during this treatment. During the alkaline treatment the cellulose crystalline form was converted from cellulose I to cellulose II. The alkaline insoluble residue was further treated with cellulases in order to render it more alkaline soluble (two-step process). The cellulose II was readily hydrolysed by Trichoderma reesei endoglucanases. Considerably higher hydrolysis yields and lower viscosities were obtained in the hydrolysis of the alkaline insoluble residue as compared with the original pulp. Compared with direct enzymatic treatment with subsequent solubilization in alkali, the overall alkaline solubility of the two-step process was slightly higher at the same enzyme dosage. However, when compared at the same hydrolysis levels, slightly lower overall alkaline solubilities were obtained in the two-step method. 0969--0239 © 1998 Black ie Academic & Professional  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号