首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wound dressings have experienced continuous and significant changes since the ancient times. The development starts with the use of natural materials to simply cover the wounds to the materials of the present time that could be specially made to exhibit various extraordinary functions. The modern bandage materials made of electrospun biopolymers contain various active compounds that are beneficial to the healing of wounds. These materials are fibrous in nature, with the size of fibers segments ranging from tens of nanometers to micrometers. With the right choices of biopolymers used for these fibrous materials, they could enhance the healing of wounds significantly compared with the conventional fibrous dressing materials, such as gauze. These bandages could be made such that they contain bioactive ingredients, such as antimicrobial, antibacterial, and anti‐inflammatory agents, which could be released to the wounds enhancing their healing. In an active wound dressing (AWD), the main purpose is to control the biochemical states of a wound in order to aid its healing process. This review provides an overview of different types of wounds, effective parameters in wound healing and different types of wound dressing materials with a special emphasis paid to those prepared by electrospinning. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Calcium alginate fibers have a novel gel‐forming capability in that, upon the ion exchange between sodium ions in the contact solution and calcium ions in the fiber, the fiber slowly transforms into a fibrous gel. This paper reviews the principles of the gel‐forming process for alginate fibers and analyzed the gelling behavior of various types of alginate fibers. The absorption characteristics of alginate wound dressings were analyzed and it was found that alginate wound dressings absorb a large quantity of liquid into the fiber structure, in addition to those held between the fibers in the textile structure. This gives rise to the unique gel blocking properties of alginate wound dressings. In addition, alginate wound dressings also have novel hemostatic and antimicrobial properties as well as the ability to promote wound healing. They are now widely used in the management of highly exuding wounds such as leg ulcers, pressure sores, and surgical wounds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Recent developments in cellulose wound dressings targeted to different stages of wound healing have been based on structural and charge modifications that function to modulate events in the complex inflammatory and hemostatic phases of wound healing. Hemostasis and inflammation comprise two overlapping but distinct phases of wound healing wherein different dressing material properties are required to bring pathological events under control when they present as a result of trauma or chronic wounds. Thus, we have designed cellulose wound dressings with properties that function through modified fiber surface properties to lower protease levels in the chronic wound and promote clotting in hemorrhaging wounds. With this in mind three finishing chemistries utilizing traditional pad-dry-cure approaches were explored for their potential to confer charged properties to cotton dressings. Cellulose dressings designed to remove cationic serine proteases from highly exudative chronic wounds were created to present negatively charged fibers as an ion exchange mechanism of protease-lowering. Phosphorylated cotton and polycarboxylic acid crosslinked cotton were prepared to examine their ability to remove human neutrophil elastase (HNE) from surrogate wound fluid. A cellulose phosphorylation reaction utilizing sodium hexametaphosphate: urea was explored to optimize cellulose phosphorylation as a function of HNE sequestration efficacy. Acid catalyzed cross linking of cellulose with butane-tetracarboxylic acid also resulted in a negatively charged dressing that removed HNE from solution more effectively than phosphorylated cellulose. Collagenase sequestration was also assessed with phosphorylated cellulose and polycarboxylic acid cross linked cellulose derivatives. Butanetetracarboxylic acid and phosphorylated cellulose functioned to remove collagenase from solution most effectively. Cellulose dressings designed to accelerate thrombosis and aggregation of blood platelets were prepared with a view to examining derivatized cotton fibers bearing a net positive charge to promote hemostasis. Cellulose and chitosan dressings bearing an aminoglucan functionality were created by grafting chitosan on cotton and preparing aminized cotton. The preparation of chitosan-grafted cotton dressings was completed with a citric acid grafting onto cellulose. Aminized cotton was functionalized as an ethylamino-ether cellulose derivative. The chitosan-grafted and aminized cotton demonstrated a dose response gelling of citrated sheep blood.  相似文献   

4.
5.
The design of wound dressings with excellent self-healing ability, adequate adhesion, good biocompatibility, and potential antibacterial ability is of great significance for the healing of infected wounds arising from human activities. Herein, a series of multi-functional hydrogel dressings, poly(ionized isocyanoethyl methacrylate-glutamine)/poly(hexamethylene guanidine) (iGx/PHMGy) hydrogels, were obtained through homopolymerization of fully ionized isocyanoethyl methacrylate-glutamine (iIEM-Gln) in the presence of poly(hexamethylene guanidine) (PHMG), in which strong hydrogen bonds were formed among urea groups in the P (iIEM-Gln) chain to form a stable hydrogel network. The prepared iGx/PHMGy hydrogels exhibited adequate self-healing ability and tissue adhesion, which could be firmly adhered to the wound surface and remained intact during application. In addition, the presence of PHMG imparted good antibacterial activity to the hydrogels for the effective promotion of the wound healing in S. aureus infected skin wound on mice. Overall, this multi-functional hydrogel provides a facile and effective strategy for the design of infected wound dressings, and may show great potential in clinical applications.  相似文献   

6.

The anti-adhesion, anti-growth and the anti-penetration of bacteria, specifically multidrug-resistant bacteria, should be taken into consideration when designing promising wound dressings for infected wounds such as diabetic foot ulcers. Wound dressings composed of natural polymeric nanofibers such as functionalized cellulose, chitosan, alginate, hyaluronic acid, dextrin and cyclodextrin with appropriate antimicrobial and skin reconstruction properties are suitable alternatives that can accelerate wound healing and remove microbial infections. For instance, to improve the release profile of antibacterial agents such as metal nanoparticles and antibiotics, water-soluble polymers like polyethylene oxide and polyvinylpyrrolidone may be incorporated into polymeric nanofiber scaffolds. This review, therefore, addresses the current status and future challenges of antibacterial activities of nanofiber scaffolds composed of some of the natural occurring polymers.

  相似文献   

7.
目前,在伤口治疗中对伤口敷料的选择越来越严格。传统的伤口敷料如纱布、绷带、海绵等在伤口愈合过程中容易诱发细菌感染,延缓伤口愈合,甚至引发慢性并发症。可注射水凝胶具备良好的生物相容性,能够适应伤口的形状以填充伤口,且具备一定的抗菌活性,从而避免伤口感染,相比传统的水凝胶伤口敷料更具备医疗优势,因此在生物医药领域得到广泛关注。本文对天然型可注射水凝胶和复合型可注射水凝胶在伤口愈合中的研究进展进行了综述;也对可注射水凝胶的未来发展趋势进行了展望。  相似文献   

8.
Since ancient times, wound dressings have evolved with persistent and substantial changes. Several efforts have been made toward the development of new dressing materials, which can meet the demanding conditions for the treatment of skin wounds. Currently, many studies have been focused on the production and designing of herb‐incorporated wound dressings. Herb‐derived constituents are more effective than conventional medicines because of their nontoxic nature and can be administered over long periods. Herbal medicines in wound healing provide a suitable environment for aiding the natural course of healing. This review mainly focuses on the diverse approaches that have been developed to produce a wound dressing material, which can deliver herb‐derived bioactive constituents in a controlled manner. This review also discusses the common wound‐dressing materials available, basic principles of wound healing, and wound‐healing agents from medicinal plants.  相似文献   

9.
Surgical procedures are susceptible to the cause of infections, which could induce delayed wound healing, oxidative stress and tissue ischemia. Multifunctional wound dressings (e.g., hydrogels) without the induction of antibiotics is promising for the elimination of surgical site infections and the associated complications. Herein, we report a reductionism approach for the fabrication of bioactive hydrogels to recapitulate antibacterial functions as well as antioxidant, pro-angiogenic and hemostatic properties in surgical infection treatments. The hydrogels composed of naturally derived Cirsium setosum extracts (CE, a traditional medicinal herb) and carboxymethyl chitosan (CS) show their capacity for surgical anti-infections on three different models (i.e., infectious random skin flap model, infectious skin defect model and infectious femur fracture model). Due to the innate bioactivities of CE and CS, CECS hydrogels can also reduce the bleeding loss (85% reduction) on a hemorrhaging liver model and improve the vascularization for skin flap regeneration. Overall, bioactive CECS hydrogels integrated with the ease and scalability of assembly process and biological activities without the addition of antibiotics is promising to act as multifunctional wound dressings for surgical anti-infections.  相似文献   

10.
Wound infections slow down the healing process and lead to complications such as septicemia, osteomyelitis, and even death. Although traditional methods relying on antibiotics are effective in controlling infection, they have led to the emergence of antibiotic-resistant bacteria. Hydrogels with antimicrobial function become a viable option for reducing bacterial colonization and infection while also accelerating healing processes. Chitosan is extensively developed as antibacterial wound dressings due to its unique biochemical properties and inherent antibacterial activity. In this review, the recent research progress of chitosan-based hydrogels for infected wound treatment, including the fabrication methods, antibacterial mechanisms, antibacterial performance, wound healing efficacy, etc., is summarized. A concise assessment of current limitations and future trends is presented.  相似文献   

11.
Infection is the major reason that people die from burns; however, traditional medical dressings such as gauze cannot restrain bacterial growth and enhance the healing process. Herein, an organic- and inorganic-base hydrogel with antibacterial activities was designed and prepared to treat burn wounds. Oxidized dextran (ODex) and adipic dihydrazide grafted hyaluronic acid (HA-ADH) were prepared, mixed with quaternized chitosan (HACC) and silver nanoparticles to fabricate Ag@ODex/HA-ADH/HACC hydrogel. The hydrogel, composed of nature biomaterials, has a good cytocompatibility and biodegradability. Moreover, the hydrogel has an excellent antibacterial ability and presents fast healing for burn wounds compared with commercial Ag dressings. The Ag@ODex/HA-ADH/HACC hydrogel will be a promising wound dressing to repair burn wounds and will significantly decrease the possibility of bacterial infection.  相似文献   

12.
Hydrophilic cotton textiles, used in hospitals and sportswear, are prone to the growth of microorganisms (bacteria, fungi) resulting in hygiene and health risks. Thus, healthcare concerns have motivated the interest for the development of multifunctional antimicrobial cotton fabrics. Moreover, cotton textiles are also used in medical applications such as wound dressings. Their functionalization with anti-inflammatory agents is desirable in order to accelerate cicatrisation in the treatment of chronic wounds. This review summarizes recent advances (from January 2016 to January 2021) on the modification and coating of cotton fabrics with nanostructures (mainly metal and metal oxide nanoparticles, functionalized silica nanoparticles) to provide them antimicrobial (antibacterial and antifungal) and anti-inflammatory properties.  相似文献   

13.
《中国化学快报》2023,34(8):108125
As a representative of chronic wounds, the long-term high levels of oxidative stress and blood sugar in chronic diabetic wounds lead to serious complications, making them the biggest challenge in the research on wound healing. Many edible natural biomaterials rich in terpenes, phenols, and flavonoids can act as efficient antioxidants. In this study, okra extract was selected as the main component of a wound dressing. The okra extracts obtained via different methods comprehensively maintained the bioactivity of multiple molecules. The robust antioxidant properties of okra significantly reduced intracellular reactive oxygen species production, thereby accelerating the wound healing process. The results showed that okra extracts and their hydrogel dressings increased cell migration, angiogenesis, and re-epithelization of the chronic wound area, considerably promoting wound remodeling in diabetic rats. Therefore, okra-based hydrogels are promising candidates for skin regeneration and wider tissue engineering applications.  相似文献   

14.
Hydrogels have attracted extensive attention in the field of biomedicine because of their similar structure to extracellular matrix (ECM) and good biocompatibility. However, the adhesiveness, mechanical properties, and antibacterial properties of conventional hydrogels are not satisfactory. In this study, multifunctional chitosan/polydopamine/polyacrylamide (CS/PDA/PAM) hydrogels are prepared through a nature-inspired strategy. The catechol group of polydopamine (PDA) component endows CS/PDA/PAM hydrogels with tissue adhesion and self-healing properties. The introduction of chitosan (CS) not only greatly improves antibacterial ability, but also enhances the mechanical properties of CS/PDA/PAM hydrogels. Skin wound healing experiments show that CS/PDA/PAM hydrogels could accelerate skin tissue regeneration and promote wound healing. Therefore, CS/PDA/PAM hydrogels have great potential in the application of new wound dressings.  相似文献   

15.
Accelerating the coagulation process and preventing wound infection are major challenges in the wound care process. Therefore, new multifunctional wound dressings with procoagulant, antibacterial, and antioxidant properties have enormous potential for clinical application. In this work, biodegradable hydrogels containing herbal extracts are prepared for wound dressings. First, the active ingredients are extracted from Amaranthus spinosus (A. spinosus) and Rubia cordifolia (R. cordifolia) and added to the hydrogels prepared from microcrystalline cellulose (MCC), carrageenan, and sodium alginate. Then the composite hydrogels are air-dried to obtain the wound dressings. The wound dressings prepared in this work have good biocompatibility and moisture retention. The mechanical properties of the wound dressings are further improved with the addition of MCC. Besides, the wound dressings have excellent procoagulant, antibacterial, and antioxidant properties due to the presence of R. cordifolia extract. Overall, the most effective group of wound dressings with different ingredient formulations reduces clotting time by 75% and largely inhibits bacterial growth. The wound dressings perform well in the animal wound models to promote wound healing. These results indicate that the hydrogel wound dressings prepared in this work have great potential for medical applications.  相似文献   

16.
Current wound healing treatments such as bandages and gauzes predominantly rely on passively protecting the wound and do not offer properties that increase the rate of wound healing. While these strategies are strong at protecting any infection after application, they are ineffective at treating an already infected wound or assisting in tissue regeneration. Next‐generation wound healing treatments are being developed at a rapid pace and have a variety of advantages over traditional treatments. Features such as gas exchange, moisture balance, active suppression of infection, and increased cell proliferation are all central to developing the next successful wound healing dressing. Electrospinning has already been shown to have the qualities required to be a key technique of next generation polymer‐based wound healing treatments. Combined with antimicrobial peptides (AMPs), electrospun dressings can indeed become a formidable solution for the treatment of both acute and chronic wounds. The literature on combining electrospinning and AMPs is now starting to increase and this review aims to give a comprehensive overview of the current developments that combine electrospinning technology and AMPs in order to make multifunctional fibers effective against infection in wound healing.  相似文献   

17.
Wound healing is a complex physiological procedure that includes diverse stages, comprising hemostasis, inflammation, proliferation, and remodeling to reconstruct the skin and subcutaneous tissue's integrity. As reported, various coexisting diseases (diabetes, vascular diseases, etc.) substantially impact wound healing. Factors like recurring injury, age, or hypertrophic scarring also affect wound healing. The management of wound care depends primarily on the advancement of novel and efficient wound dressing substances, and it persists to be a vivid research area in chronic wound healing. Over the past years, the investigation and advancement of wound dressing biomaterials have registered a new standard level, and superior knowledge based on chronic wound pathogenesis has been achieved. Recently, nanotechnology has presented an excellent method to accelerate acute and chronic wound healing via stimulating appropriate movement through the diverse healing stages. Among various nanomaterials, nanoparticles (NPs) have been spotlighted as an efficient treatment strategy for wound healing due to their ability to act as both a therapeutic and carrier system. Their small size and high surface area to volume ratio enhance the probability of bio-interaction and penetration at the wound area aiding cell–cell interactions, the proliferation of cells, cell signaling, and vascularization. This review endeavored to throw light on different aspects of wounds and the latest advances in nanoparticle-based biomaterials for effective wound healing. Further, challenges and future potentialities have been addressed.  相似文献   

18.
Wound healing, especially chronic wounds, has been one of the major challenges in the field of biomedicine. Drug therapy alone is not effective, so a variety of functional wound healing dressings have been developed. Microneedles have attracted more and more attentions in the field of wound healing dressings due to their penetration and high drug delivery efficiency. In this review, all the studies on the application of microneedles in wound healing in recent years are summarized, classify different microneedles according to their functions in the process of wound healing, discuss the current challenges in the transformation of microneedle technology toward clinical applications, and finally look forward to the future design and development directions of microneedles in this field.  相似文献   

19.
Wound refers to the place where human body is injured and ruptured. So, wounds in a broad sense include not only skin wounds, but also damages of muscle, corneal, heart, and lung, etc. As “gold standard” of wound closure, suture and staple cause secondary damage to the tissue, and require professional skills and equipment, so noninvasive hydrogel adhesives have been developed as an alternative to close and treat different kinds of wounds. However, the existing reviews mainly discussed the research of hydrogel adhesives for skin wounds, and the focus is mostly on its types and adhesion mechanisms, but a review comprehensively discusses the design and application of hydrogel adhesives on generalized wounds for wound closure and wound healing and the unique needs of various wounds for hydrogel adhesives is still lacking. In this review, the types and adhesion mechanisms of hydrogel adhesives will be briefly described, then the research progress of hydrogel adhesives in wound treatment is reviewed in detail from two aspects: the comprehensive design principles and the unique requirements of different types of wounds. Overall, we expect that this review will provide guidance for the development of hydrogel adhesives as new avenues for generalized wound care and treatment.  相似文献   

20.
Chronic wounds, such as venous, pressure, and diabetic ulcers, are difficult to heal and represent a rising social and economical problem. Compared to acute wounds, non-healing wounds contain elevated levels of neutrophil elastase, pro-inflammatory cytokines (IL-1β, IL-6, IL-8), and matrix metalloproteases (MMP-2, MMP-9, MMP-13) as well as free radicals. Their overproduction perpetuates the inflammatory phase resulting in severe tissue damage and degradation of growth factors. Consequently, wound closure is prevented and the wound remains non-healing for month or even years. The increasing numbers of patients suffering from wounds that fail to heal are a significant challenge for health care professionals. Wound dressings play an important role in the entire management of these wounds. New materials and treatment strategies are needed to improve wound care. Recent advances in the field of biomaterials and their medical applications indicate the significance and potential of various natural polymers in the development of novel classes of wound dressings. Native polymers are an ideal source for bio-active wound dressings because of their availability and biocompatibility. Hence, several studies have been conducted to explore the influence of wound dressings consisting of collagen, oxidized regenerated cellulose, bacterial cellulose, chitosan, or alginate on the destructive milieu in chronic wounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号