首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Ordered mesoporous Fe-doped NiO with dual mesopores, high surface area and well-interconnected crystalline porous frameworks have been synthesized via solvent evaporation-induced co-assembly (EICA) method, by using PS-b-P4VP as structure-directing agent, Ni(acac)2 and Fe (acac)3 as binary inorganic precursor, and showed superior ethanol sensing performances with good sensitivity, high selectivity and fast response-recovery dynamics.  相似文献   

2.
A series of alumina-supported alkaline earth metal oxide catalysts were prepared by incipient-wetness impregnation. These catalysts were characterized by nitrogen-sorption to determine their surface areas and pore size distributions. The basicities of these catalysts were characterized by temperature-programmed desorption of carbon dioxide. The TPD results demonstrate that all of the catalysts have one-peak profiles. The basicity increases with increasing atomic number of the alkaline earth metal. The alumina-supported alkaline earth oxides exhibit the same basic properties as bulk metal oxides. However, the presence of alumina can increase the mechanical strength of the catalyst, since the alkaline earth oxides have a weak mechanical strength. The basic properties of the catalysts are strongly influenced by the calcination temperature.  相似文献   

3.
《中国化学快报》2019,30(12):2003-2008
Mesoporous late-transition metal oxides have great potential in applications of energy,catalysis and chemical sensing due to their unique physical and chemical properties.However,their synthesis via the flexible and scalable soft-template method remain a great challenge,due to the weak organic-inorganic interaction between the frequently used surfactants(e.g.,Pluronic-type block copolymers) and metal oxide precursors,and the low crystallization temperature of metal oxides.In this study,ordered mesoporous NiO with dual mesopores,high surface area and well-interconnected crystalline porous frameworks have been successfully synthesized via the facile solvent evaporation-induced co-assembly(EICA) method,by using lab-made amphiphilic diblock copolymer polystyrene-b-poly(4-vinylpyridine)(PS-b-P4 VP) as both the structure-directing agent(the soft template) and macromolecular chelating agents for nickel species,THF as the solvent,and nickel acetylacetonate(Ni(acac)2) as inorganic precursor.Similarly,by using Ni(acac)2 and Fe(acac)3 as the binary precursors,ordered mesoporous Fedoped NiO materials can be obtained,which have bimodal mesopores of large mesopores(32.5 nm) and secondary mesopores(4.0-11.5 nm) in the nanocrystal-assembled walls,high specific surface areas(~74.8 m~2/g) and large pore value(~0.167 cm~3/g).The obtained mesoporous Fe-doped NiO based gas sensor showed superior ethanol sensing performances with good sensitivity,high selectivity and fast response-recovery dynamics.  相似文献   

4.
Mesoporous materials have attracted considerable attention for use as a catalyst or a catalyst support due to their remarkable textural properties such as high surface area and large pore volume with a narrow pore size distribution. Many efforts have been made to design mesoporous materials for use in heterogeneous catalyst systems. Recent progress and results regarding the preparation of nickel-mesoporous materials and their application to the hydrodechlorination of chlorinated organic compounds were discussed in this review. Mesoporous materials were used as a support for nickel catalyst or a nickel-incorporated mesoporous catalytic material in this work. Two research areas were described and discussed in this review. One is the preparation of mesoporous alumina-supported nickel catalysts and their application to the hydrodechlorination of 1,2-dichloropropane and o-dichlorobenzene. The other is the preparation of mesoporous silica-supported nickel catalysts and their application to the hydrodechlorination of 1,1,2-trichloroethane and chlorobenzene.  相似文献   

5.
Novel thermally stable mesoporous mixed metal Nb-M (M = V, Mo and Sb) oxides were synthesized in the presence of a nonionic Pluronic P123 surfactant. These oxides displayed promising pore structures and chemical compositions for selective oxidative functionalization of propane: high surface areas (up to 200 m2/g), large pore sizes (5-14 nm), and high pore volumes (up to 0.46 cm3/g). The oxidative dehydrogenation of propane to propylene over mesoporous mixed metal Nb-M oxides employed as a probe reaction suggested that the M component was dispersed as the molecular surface species and also formed a solid solution with NbOx in the inorganic walls of these mesoporous mixed metal oxides.  相似文献   

6.
Mesoporous metal oxides (CeO(2-δ))-YSZ have been synthesized by a versatile direct synthesis method using ionic cetyltrimethylammonium bromide (CTAB) and different nonionic (block copolymers) as surfactants and urea as hydrolyzing agent. The synthesis was realized at pH=9 using tetraethylammonium hydroxide (TEAOH) as pH mediator. Calcination at 550 °C led to the formation of crystalline metal oxides with uniform mesoporosity. The obtained materials have been characterized by thermogravimetric analysis (TG-DTG), wide and small-angle X-ray diffraction (XRD), Raman spectroscopy, Brunauer, Emmett and Teller (BET) surface area analysis, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). All the obtained materials exhibits mesoporous structure, crystalline structure indexed in a cubic symmetry, showing a high surface area, a uniform and narrow pore size distribution, spherical morphology typical for the mesoporous materials. The crystalline and mesoporous structures, surface chemistry and stoichiometry for the samples synthesized using ionic and nonionic surfactants have been discussed.  相似文献   

7.
Supported nickel has been used in a wide range of applications for industrial reactions, such as steam reforming, hydrogenation and methanation. In this work, nickel aluminate was prepared by the sol–gel process using alumatrane as the alkoxide precursor, directly synthesized from the reaction of inexpensive and available compounds, aluminum hydroxide and TIS (triisopropanolamine) via the oxide one pot synthesis (OOPS) process. Various conditions of the sol–gel process, such as pH, calcination temperature, hydrolysis ratio and ratio of nickel to aluminum, were studied. All samples were characterized using FTIR, TGA, XRD, TPR, DR‐UV and BET. The BET surface area was in the range of 340–450 m2/g at the calcination temperature of 500 °C with a mesoporous pore size distribution. Catalyst activity testing in CO oxidation reaction depended on Ni:Al ratio and calcination temperature. Higher activity was obtained from higher Ni content and lower calcination temperature. In addition, catalysts prepared using alumatrane precursor had higher percentage conversion than those prepared using aluminum hydroxide precursor. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Silica mesoporous materials modified with manganese and iron were obtained by the hydrothermal method. Gold was introduced to pure and modified silica materials by the direct hydrothermal and impregnation methods. Nitrogen adsorption/desorption studies evidenced formation of the materials with large total surface area and mesoporous structure. Unmodified silica materials showed regular pore arrangement. The uniform porous structure was distorted in the iron or manganese containing samples. XRD, UV-Vis/DRS spectroscopy and temperature programmed reduction studies revealed changes of the nature of transition metal oxide and gold species on the different preparation stages. The oxide species after drying were strongly dispersed and partially incorporated to the silica framework. High temperature treatment led to the formation of extraframework Mn and Fe oxide species. Complex processes of gold deposition were observed during hydrothermal synthesis and impregnation of modified silica materials. The increase of the size of gold species was observed during calcination. The presence of transition metal oxides decreased sintering of gold crystallites.  相似文献   

9.
We have developed a method for the synthesis of metal oxide nanocrystals with controllable shape and size, which is based on the direct thermal decomposition of metal nitrates in octadecylamine. Mn3O4 nanoparticles and nanorods with different lengths were synthesized by using manganese nitrate as the decomposition material. Other metal oxide nanocrystals such as NiO, ZnO, CeO2, CoO, and Co3O4 were also prepared by this method. These nanocrystals were then assembled into 3D colloidal spheres by a surfactant-assisted self-assembly process. Subsequently, calcination was carried out to remove the surfactants to obtain mesoporous metal oxides, which show large pores, good crystallization, thermally stable pore mesostructures, and potential applications in various fields, especially in catalysis and lithium-ion batteries.  相似文献   

10.
以有序介孔二氧化硅KIT-6为硬模板,硝酸钴、硝酸铈为金属源,分别在真空辅助条件和普通搅拌条件下制备了介孔CoCeOx复合氧化物。采用XRD、SEM、TEM、N2吸脱附等技术表征了复合氧化物的物化性质,并评价其氧化甲苯的性能。结果表明,在真空辅助和搅拌条件下制备的CoCeOx氧化物是由Co3O4和CeO2组成的介孔Co3O4-CeO2复合氧化物,其比表面积分别为141和89 m^2·g^-1,平均孔径分别为8.7和9.6 nm。真空辅助纳米复制过程有利于金属盐的前驱体充分填充到模板的孔隙中,去除模板后,可以得到有序的介孔复合金属氧化物。所制备介孔钴铈复合氧化物具有孔道有序性好、比表面积大的特点,在挥发性有机化合物的氧化去除方面具有一定的应用前景。  相似文献   

11.
介孔氧化铝负载Ni-Co氧化物催化剂上丙烷氧化脱氢制丙烯   总被引:1,自引:0,他引:1  
以非离子型三嵌段共聚物作为模板剂, 异丙醇铝为氧化铝的前驱物, 采用一锅法合成了一系列介孔氧化铝负载镍氧化物、钴氧化物以及镍-钴双金属氧化物催化剂, 并以介孔氧化铝为载体, 采用浸渍法制备了负载Ni-Co 氧化物催化剂. 采用N2吸附-脱附、高分辨透射电镜(HRTEM)、X射线粉末衍射(XRD)、H2程序升温还原(H2-TPR)以及激光拉曼光谱(LRS)等技术对催化剂的结构与性质进行表征, 并考察了催化剂的丙烷氧化脱氢反应性能. 结果表明: 一锅法制备的各催化剂均有大的比表面积和规整的孔道结构, 且负载的金属氧化物高度分散; 而浸渍法制备的催化剂, 其载体的介孔结构被破坏并有Co3O4晶相生成. 在考察的催化剂中, 一锅法合成的介孔氧化铝负载Ni-Co 氧化物催化剂表现出最佳的丙烷氧化脱氢性能. 在450 °C、C3H8:O2:N2的摩尔比为1:1:4和空速(GHSV)为10000 mL·g-1·h-1条件下, 该催化剂上丙烯产率为10.3%, 远高于浸渍法制备的催化剂上所获得的丙烯产率(2.4%). 关联催化剂表征和反应结果, 讨论了催化剂结构与性能之间的关系.  相似文献   

12.
Recently we reported that mesoporous niobium oxide can be chemically reduced by Na-naphthalene while fully retaining its mesostructure. This was the first report of a molecular sieve acting as a stoichiometric electron acceptor. Herein we expand on the initial work by presenting a detailed study on Li-, Na-, K-, Rb-, and Cs-reduced samples of mesoporous Nb oxide, as well as Li-reduced mesoporous Ta and Ti oxides. While the Nb- and Ta-based materials fully retained their structure on reduction as determined by X-ray diffraction (XRD) and nitrogen adsorption, the Li-reduced Ti material retained high surface area and narrow pore size distribution, but lost its diffraction pattern, indicating an increased level of disorder in this material. X-ray photoelectron spectroscopy (XPS) and UV-visible reflectance spectroscopy revealed that all reduced mesoporous oxides studied have a similar electronic structure, corresponding to the presence of a disordered impurity band in the material lying between the valence band and the conduction band. Electron paramagnetic resonance (EPR) studies suggest that the electron in this impurity level is unpaired and best described as a free electron, only loosely bound to the alkali or transition metal. SQUID magnetometry showed that all reduced materials are paramagnetic, further confirming the presence of unpaired electrons in the structure. All materials in this study were insulating with the exception of the Li-reduced mesoporous Ti material, which was highly conducting, possibly due to an Anderson transition. Electrochemical studies on the unreduced mesoporous oxides demonstrated that while the Ta and Nb materials are capacitors with only a small degree of reversible electrochemical behavior in the bulk sample, the Ti material was an electrical conductor with fully reversible redox behavior.  相似文献   

13.
邢伟  李丽  阎子峰  LU Gao-Qing 《化学学报》2005,63(19):1775-1781
以十二烷基硫酸钠为模板剂, 采用尿素为沉淀剂, 用均匀沉淀法, 适当控制尿素的水解速度, 制备具有介孔结构的氢氧化镍胶体, 在不同温度下焙烧处理得到孔分布集中的氧化镍介孔分子筛. 结果表明, 在523 K下焙烧得到的氧化镍BET比表面达到477.7 m2•g-1. 结构表征还显示, 介孔氧化镍的孔壁为多晶结构, 其孔结构形成机理应为准反胶束模板机理. 循环伏安法表明用NiO介孔分子筛制备的电极有很好的电容性能. 与浸渍法和阴极沉淀法制得的NiO相比, 这种介孔结构的NiO能够大量用来制作电化学电容器电极, 并且保持较高的比电容量和良好的电容性能.  相似文献   

14.
Mesoporous silica metal oxide (ZnO and CdO) thin films have been used as metal ion precursors to produce the first examples of mesoporous silica metal sulfide (meso-SiO(2) @ZnS, meso-SiO(2) @CdS) or silica metal selenide (meso-SiO(2) @ZnSe, meso-SiO(2) @CdSe) thin films, in which the pore walls are made up of silica and metal sulfide or metal selenide nanoflakes, respectively. A gentle chemical etching with a dilute HF solution of the meso-SiO(2) @CdS (or meso-SiO(2) @CdSe) produces mesoporous cadmium sulfide (meso-CdS) (or cadmium selenide, meso-CdSe). Surface modified meso-CdS displays bright blue photoluminescence upon excitation with a UV light. The mesoporous silica metal oxides are formed as metal oxide nanoislands over the silica walls through a self-assembly process of a mixture of metal nitrate salt-two surfactants-silica source followed by calcination step. The reactions, between the H(2) S (or H(2) Se) gas and solid precursors, have been carried out at room temperature and monitored using spectroscopy and microscopy techniques. It has been found that these reactions are: 1)?taking place through the diffusion of sulfur or selenium species from the top metal oxide layer to the silica metal oxide interface and 2)?slow and can be stopped at any stage to obtain mesoporous silica metal oxide metal sulfide or silica metal oxide metal selenide intermediate thin films.  相似文献   

15.
微波法负载具有简便、快速、均匀的优点. 本文尝试以乙二醇为还原剂, Ni(Ac)2为Ni源, 通过微波辐射负载及低温空气煅烧在CMK-3上形成NiO. 对样品进行X射线衍射(XRD)、透射电子显微镜(TEM)、N2吸脱附等结构表征及循环伏安(CV)等电化学性能测试. 结果显示, 微波法并经低温空气煅烧后有序介孔碳CMK-3的小角XRD峰强度变弱、比表面积下降、孔容减小, 但却使其比电容从229.3 F/g提高到295.9 F/g, 大于文献报导中介孔碳负载MnO2, RuO2xH2O后的比电容值. 由此说明微波法是有效的负载方法, 具有较好的应用前景.  相似文献   

16.
李丽坤  魏小兰  章浩 《化学进展》2009,21(4):765-770
介孔材料由于其奇特的性质和广泛的应用成为人们研究的热点。本文介绍了近几年来介孔材料质子和锂离子导电性的研究现状和发展趋势,主要总结了介孔纯氧化物、介孔纯氧化物的孔内修饰、介孔氧化物的孔壁掺杂修饰、介孔氧化物薄膜、介孔材料与有机高分子复合膜的离子导电性的研究进展。  相似文献   

17.
Highly ordered mesoporous ZnTiO(3) with crystalline walls was directly prepared by a sol-gel process combined with evaporation induced self-assembly in ethanol, using amphiphilic triblock copolymers as structure directing agents. The whole process is self-adjusting to organize the network-forming metal oxide species without additional acid or base. The mesoporous material is pure cubic-phase ZnTiO(3) and has large surface area (up to 134 m(2)/g), large pore volume (0.17 cm(3)/g), and narrow pore size distribution (3-4.5 nm). The optic behavior was systematically studied, which is very helpful to understand the mesoporous ZnTiO(3) material either in fundamental study or for potential applications in optics and catalysis. This work provides a "self-adjusting" approach to fabricate the mesoporous functional materials with diverse compositions: the diverse hydrolysis-condensation kinetics of various metal oxides is homogenized to yield stable multicomponent precursors. The development of such a simple, versatile, and reproducible method is important for applications in practice.  相似文献   

18.
Ordered mesoporous tungsten oxide@graphene aerogel (mWO3@GA) nanocomposites were synthesized via an interface-induced co-assembly process, which show a high selectivity and great response to acetone at low temperature.  相似文献   

19.
氧化钨介孔材料的制备与表征   总被引:3,自引:0,他引:3  
以介孔二氧化硅(KIT-6)为硬模板, 硅钨酸为钨源, 用硬模板法制备WO3-SiO2复合材料, 再利用HF除去二氧化硅, 得到了介孔三氧化钨材料. 用X射线衍射(XRD)、能量扩散X射线(EDX)、高分辨透射电镜(HRTEM)、N2吸附-脱附等表征手段, 对制备复合材料的物料比、煅烧温度以及不同分散剂等条件进行了考察. 结果表明, 硅钨酸与硅介孔的物料比(m(WO3)/m(SiO2))在3:1到4:1之间, 在600-750 ℃下煅烧, 能制备结构较好的介孔氧化钨. 乙醇和蒸馏水为分散剂时, 用乙醇为分散剂所得的介孔WO3材料具有更高的比表面积和孔体积.  相似文献   

20.
The paper reports the results of using polymer-colloid complexes in solutions in order to control textural properties of mesoporous aluminium oxide in the sol–gel synthesis process. Polyethyleneimine, cetyltrimethylammonium chloride, as well as a polymer-colloid complex formed by their interaction in the solution were used as pore-forming templates. The mesoporous aluminium oxides synthesized in this work had a narrow pore size distribution and a large surface area. The application of different templates made it possible to affect the mechanism of supramolecular self–assembly of materials, namely by controlling the pore sizes. When the polymer-colloid complex was used as the template for the formation of aluminium oxide nanostructures, 6 nm cylindrical pores were formed, while using individual templates led to the formation of 8–13 nm mesopores. Identifying the formation mechanism of a certain pore type will make it possible to use these materials in specific reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号