首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ellagic acid (EA), one of the polyphenols in fruits and nuts, has pharmacological activity. To explore binding behavior of EA to protein, human serum albumin (HSA) was chosen and investigated by fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and molecular modeling in aqueous solution. Fluorescence titration results indicated that EA effectively quenched the intrinsic fluorescence of HSA by static quenching and the binding process was spontaneous. According to the Scatchard equation, there was only one class of binding sites can bind to HSA, the binding constants at three different temperatures (298, 310 and 318 K) were 8.47 × 104, 7.39 × 104 and 6.00 × 104, respectively. It was found by FT-IR spectra that EA altered HSA secondary structure. Thermodynamic analysis showed that hydrophobic interaction and hydrogen bonds played an important role in stabilizing EA–HSA complex. A molecular docking study suggested that the HSA residues for EA binding located in sub-domain IIA.  相似文献   

2.
The interaction between erlotinib and human serum albumin (HSA) in simulated physiological conditions was investigated by spectroscopic methods. The results revealed that erlotinib caused the fluorescence quenching of HSA through a static quenching procedure. The binding constants at 293, 298, 303 and 308 K were obtained as 2.53 × 105, 8.13 × 104, 3.59 × 104 and 1.93 × 104 M?1, respectively. There may be one binding site of erlotinib on HSA at 298 K. The thermodynamic parameters indicated that the interaction between erlotinib and HSA was driven mainly by hydrogen bonding or van der Waals forces. Synchronous fluorescence spectra, UV–Vis spectra, circular dichroism and Fourier Transform infrared spectroscopy results showed erlotinib binding slightly changed the conformation of HSA with secondary structural content changes. Förster resonance energy transfer study revealed high possibility of energy transfer with erlotinib-Trp-214 distance of 3.48 nm. The results of the present study may provide valuable information for studying the distribution, toxicological and pharmacological mechanisms of erlotinib in vivo.  相似文献   

3.
The interaction between juglone at the concentration range of 10–110 µM and bovine serum albumin (BSA) or human serum albumin (HSA) at the constant concentration of 11 µM was investigated by fluorescence and UV absorption spectroscopy under physiological-like condition. Performing the experiments at different temperatures showed that the fluorescence intensity of BSA/HSA was decreased in the presence of juglone by a static quenching mechanism due to the formation of the juglone–protein complex. The binding constant for the interaction was in the order of 103 M?1, and the number of binding sites for juglone on serum albumins was determined to be equal to one. The thermodynamic parameters including enthalpy (ΔH), entropy (ΔS) and Gibb’s free energy (ΔG) changes were obtained by using the van’t Hoff equation. These results indicated that van der Waals force and hydrogen bonding were the main intermolecular forces stabilizing the complex in a spontaneous association reaction. Moreover, the interaction of BSA/HSA with juglone was verified by UV absorption spectra and molecular docking. The results of synchronous fluorescence, UV–visible and CD spectra demonstrated that the binding of juglone with BSA/HSA induces minimum conformational changes in the structure of albumins. The increased binding affinity of juglone to albumin observed in the presence of site markers (digoxin and ibuprofen) excludes IIA and IIIA sites as the binding site of juglone. This is partially in agreement with the results of molecular docking studies which suggests sub-domain IA of albumin as the binding site.  相似文献   

4.
《Analytical letters》2012,45(1):67-81
Abstract

It was found that the fluorescence intensity of lanthanum (III) (La3+)‐quercetin (Qu) complex is greatly enhanced by proteins in the presence of sodium dodecyl benzene sulfonate (SDBS). Based on this finding, a new fluorimetric method for the determination of proteins was developed. Under optimum conditions, the enhanced intensity of fluorescence is in proportion to the concentration of proteins in the range of 2.5×10?8 to 1.0×10?5 g/mL for bovine serum albumin (BSA), 5.0×10?8 to 1.5×10?5 g/mL for human serum albumin (HSA), and 1.0×10?7 to 1.5×10?5 g/mL for egg albumin (EA). Their detection limits (S/N=3) are 5.0×10?9 g/mL, 7.0×10?9 g/mL, and 2.1×10?8 g/mL, respectively. The interaction mechanism was also studied.  相似文献   

5.
The interactions between cyclophosphamide hydrochloride (CYC) and aspirin (ASA) with human serum albumin (HSA) were investigated by measuring fluorescence anisotropy, poly-dispersity index, and time-resolved fluorescence. Also, isothermal titration calorimetry (ITC) was performed. The fluorescence spectra of the drugs exhibited an appreciable hypsochromic shift along with an enhancement in the fluorescence intensity. The gradual addition of HSA led to a marked increase in fluorescence anisotropy (r), and from this value it is argued that the drugs were located in a restricted environment of the protein. The binding constants for the ASA–HSA and CYC–HSA complexes were found to be 1.27 × 108 and 4.23 × 108 mol·L?1, respectively, as calculated from the relevant fluorescence data. The polydispersity index and size distribution of the protein–drug complex were measured at several concentrations of the drugs by the zeta potential technique, which confirmed the already obtained experimental results. From the analysis of the steady-state and time-resolved fluorescence quenching of the drugs in aqueous solutions in the presence of HSA, it was found that the quenching is static in nature. ITC experiments revealed that, in the absence of drugs, the dominant forces are electrostatic, whereas hydrophobic and weak electrostatic forces became significant in the presence of the drug. The primary binding pattern between the drugs and HSA was interpreted as a combined effect of hydrophobic association and electrostatic interactions.  相似文献   

6.
Sun  Hanwen  He  Pan 《Chromatographia》2008,68(11):969-975

The binding of fluoroquinolones to the transport protein, human serum albumin (HSA), under simulated physiological conditions has been studied by capillary electrophoresis–frontal analysis (CE–FA). The binding of these drugs to human plasma was evaluated by using ultrafiltration and capillary electrophoresis. The free drug concentration [D]f at each HSA concentration was determined by the plateau height in the electropherograms and the calibration lines. The binding constants of fluoroquinolones and HSA were estimated using nonlinear regression with origin 7.5 software. The fluoroquinolones were found to show low affinity toward HSA, with binding constants ranging from 1.73 × 102 to 5.40 × 102 M−1. The percentages of protein binding (PB) for fluoroquinolones to HSA were between 8.6 and 22.2%, while the PB percentages for fluoroquinolones to human plasma were between 10.2 and 33.1%. It can be found that the PB percentages for fluoroquinolones to HSA are mostly lower than those for fluoroquinolones to human plasma. It suggests that HSA is the primary protein responsible for the binding of fluoroquinolones in human plasma. The thermodynamic parameters were obtained by CE–FA. The positive ∆H and ∆S values obtained by CE–FA showed that the binding reaction was an endothermic process, and the entropy drive the binding and hydrophobic interaction played major roles in the binding of fluoroquinolones to HSA.

  相似文献   

7.
芦丁金属配合物的合成、表征及与血清白蛋白的相互作用   总被引:21,自引:0,他引:21  
本文合成了芦丁的过渡金属配合物,通过红外及元素分析等方法对其进行了表征。采用荧光光谱和紫外光谱法研究了芦丁的过渡金属配合物与牛血清白蛋白(BSA)和人血清白蛋白(HSA)的相互作用。通过二者的荧光光谱的变化,求得芦丁过渡金属配合物与血清白蛋白的结合常数。探讨了它们之间作用力的类型。  相似文献   

8.
Hanwen Sun  Pan He 《Chromatographia》2008,68(11-12):969-975
The binding of fluoroquinolones to the transport protein, human serum albumin (HSA), under simulated physiological conditions has been studied by capillary electrophoresis–frontal analysis (CE–FA). The binding of these drugs to human plasma was evaluated by using ultrafiltration and capillary electrophoresis. The free drug concentration [D]f at each HSA concentration was determined by the plateau height in the electropherograms and the calibration lines. The binding constants of fluoroquinolones and HSA were estimated using nonlinear regression with origin 7.5 software. The fluoroquinolones were found to show low affinity toward HSA, with binding constants ranging from 1.73 × 102 to 5.40 × 102 M?1. The percentages of protein binding (PB) for fluoroquinolones to HSA were between 8.6 and 22.2%, while the PB percentages for fluoroquinolones to human plasma were between 10.2 and 33.1%. It can be found that the PB percentages for fluoroquinolones to HSA are mostly lower than those for fluoroquinolones to human plasma. It suggests that HSA is the primary protein responsible for the binding of fluoroquinolones in human plasma. The thermodynamic parameters were obtained by CE–FA. The positive ?H and ?S values obtained by CE–FA showed that the binding reaction was an endothermic process, and the entropy drive the binding and hydrophobic interaction played major roles in the binding of fluoroquinolones to HSA.  相似文献   

9.
The interaction between 2,4-dichlorophenol (DCP) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy combined with UV-vis absorption and circular dichroism (CD) spectroscopy under simulative physiological conditions. The experiment results show that the fluorescence intensity of BSA is dramatically decreased owing to the formation of a DCP–BSA complex. The corresponding effective quenching constants (K a) between DCP and BSA at four different temperatures (292, 298, 304 and 310 K) were determined to be 10.08×104, 9.082×104, 8.177×104, and 7.260×104 L?mol?1, respectively. The thermodynamics parameters enthalpy change (ΔH) and entropy change (ΔS) were calculated to be ?13.64 kJ?mol?1 and 49.08 J?mol?1?K?1, which suggested that hydrophobic interaction was the predominant intermolecular force. Site marker competitive experiments indicated that the binding of DCP to BSA primarily takes place in subdomain IIA. The binding distance (r) between DCP and the tryptophan residue of BSA ias 4.09 nm according to Förster’s theory of non-radioactive energy transfer. The conformational investigation demonstrated that the presence of DCP decreased the α-helical content of BSA and induced a slight unfolding of the polypeptides of protein, which confirmed the occurrence some micro environmental and conformational changes of BSA molecules.  相似文献   

10.
The host–guest interaction of tolmetin (TOL) with β-cyclodextrin (β-CD) and the influence of human serum albumin (HSA) on the formation of the inclusion complex were studied by 1D and 2D NMR spectroscopy. The TOL/β-CD inclusion complex formed at a molar ratio of 1:1 with a binding constant value of 2164.5 L·mol?1. Data analysis showed that the addition of 10 μmol·L?1 of HSA weakened the strength of TOL binding to β-CD (K a = 1493 L·mol?1). The interaction of TOL with HSA in the absence and presence of β-CD was studied by analyzing the fluorescence quenching data. The Stern–Volmer quenching constants and the binding constants are found to be smaller in the presence of β-CD, suggesting that β-CD hinders the strong interaction of TOL with HSA by complex formation. Additionally, the presence of β-CD does not induce conformational and microenvironmental changes on HSA.  相似文献   

11.
The interaction of plumbagin (PLU) with human serum albumin (HSA) in physiological buffer (pH=7.4) was studied by fluorescence spectroscopy. Results obtained from analysis of the fluorescence spectra indicated that PLU has a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. Fluorescence quenching data revealed that the quenching constants (K) are 4.43×104, 3.26×104 and 1.69×104 L?mol?1 at 293, 303 and 313 K, respectively. The thermodynamic parameters ΔH° and ΔS° were calculated to be ?36.63 kJ?mol?1, and ?35.702 J?mol?1?K?1 respectively, which suggested that van der Waals interactions and hydrogen bonds play a major role in the interaction of PLU with HSA. The distance between donor (HSA) and acceptor (PLU) was calculated to be 3.76 nm based on Förster’s non-radiative energy transfer theory. The results of synchronous fluorescence spectra showed that binding of PLU to HSA can induce conformational changes in HSA.  相似文献   

12.
The bindings of detemir [LysB29(Nε-tetradecanoyl)des(B30)-insulin] with two highly homologous albumins, HSA (human serum albumin) and BSA (bovine serum albumin), were investigated through CD, spectrofluorophotometry, and molecular docking analysis. The absence of any tryptophanyl residue in detemir makes albumin binding study possible by exclusive tryptophanyl spectral quenching at 340 nm (λem = 296 nm). The interactions found to be static (Kq > 1010 M?1 s?1) with Stern–Volmer constants ≈103 M?1. The observed ΔG 0 that was negative in all cases concludes the reactions were spontaneous. Domains I and III of an albumin unfold with 5.0 M urea at pH 7.4, although domain II remains intact. Significant decreases in ΔH 0 and ΔS 0 were due to unfolding explicit that detemir binding may involve domains I and III of albumins. Temperature-dependent changes in binding were higher in HSA than BSA but after unfolding such changes were very less, further indicating the role of domains I and III in detemir binding. Pro28 and Tyr26 of insulin were found to be interacting with Arg114 and Val116 of HSA domain I, while myristate segment of detemir binds to Lys519 of domain III. Interactions seem to be predominantly hydrophobic and entropy driven. Although detemir binds to albumin through myristate, the peptide part shows involvement in binding.  相似文献   

13.
Among the biological parameters of chemotherapeutics, serum albumin binding is a critical factor in determining drug distribution and bioavailability. In this study, the binding properties as well as the interaction of ampicillin and streptomycin at their binding sites of bovine serum albumin (BSA) were investigated. The binding constant varied from 3.2 × 103 M?1 at 298 K to 37.5 × 103 M?1 at 313 K for ampicillin, and from 10.7 × 103 M?1 at 298 K to 3.5 × 103 M?1 at 313 K for streptomycin. By increasing the temperature, from 298 to 313 K, the binding affinity decreased by about 11-fold for ampicillin. Conversely, streptomycin showed stronger binding at higher temperature, which is decreased by threefold at 298 K. Interestingly, the affinity of ampicillin with the free BSA was ~4-fold higher than the binding with BSA/streptomycin complex. In contrast, the affinity of streptomycin with the free BSA was ~6-fold lower than the binding with BSA/ampicillin complex. Mutual binding experiments indicate that ampicillin and streptomycin are sharing both of common and different binding sites on BSA. Dissection of the forces of interactions indicated that rigid-body binding was the mode of binding of ampicillin and streptomycin with BSA with minor degree of conformational changes. Both of ampicillin and streptomycin can bind with free BSA. Furthermore, the binding of ampicillin with BSA improves the binding of streptomycin, while the binding of streptomycin with BSA adversely affect the binding of ampicillin.  相似文献   

14.
The mechanism of the interaction between bovine serum albumin (BSA) and [Pt(phen) (histidine)]+ complex was studied employing ultraviolet (UV) absorption, circular dichroism (CD), FT-IR, differential pulse voltammetry (DPV), and fluorescence spectral methods. Fluorescence data showed that the intrinsic fluorescence of BSA was strongly quenched by Pt(II) complex in terms of an untypical static quenching process. The corresponding number of binding sites (n) and binding constant (K b) of BSA and complex at 283, 298, and 310 K were calculated to be 0.61?×?106, 19?×?106, and 42?×?106 M?1, respectively. The results showed that the increasing temperature improves the stability of the complex–BSA system, which results in a higher binding constant and the number of binding sites of the complex–BSA system. The positive ΔH and positive ΔS indicated that hydrophobic forces might play a major role in the binding between complex and BSA. Based on Forster’s theory of non-radiation energy transfer, the binding distance (r) between the donor (BSA) and acceptor (Pt(II) complex) was evaluated. The results of CD, UV–vis, DPV, and FT-IR spectroscopy showed that the binding of Pt(II) complex to BSA induced conformational changes in BSA  相似文献   

15.
The interaction of ginkgolic acid (15:1, GA) with human serum albumin (HSA) was investigated by FT–IR, CD and fluorescence spectroscopic methods as well as molecular modeling. FT–IR and CD spectroscopic showed that complexation with the drug alters the protein’s conformation by a major reduction of α-helix from 54 % (free HSA) to 46–31 % (drug–complex), inducing a partial protein destabilization. Fluorescence emission spectra demonstrated that the fluorescence quenching of HSA by GA was by a static quenching process with binding constants on the order of 105 L·mol?1. The thermodynamic parameters (ΔH = ?28.26 kJ·mol?1, ΔS = 11.55 J·mol?1·K?1) indicate that hydrophobic forces play a leading role in the formation of the GA–HSA complex. The ratio of GA and HSA in the complex is 1:1 and the binding distance between them was calculated as 2.2 nm based on the Förster theory, which indicates that the energy transfer from the tryptophan residue in HSA to GA occurs with high probability. On the other hand, molecular docking studies reveal that GA binds to Site II of HSA (sub-domain IIIA), and it also shows that several amino acids participate in drug–protein complexation, which is stabilized by H-bonding.  相似文献   

16.
Among the pharmacokinetic parameters of chemotherapeutics, serum albumin binding is a critical factor in determining drug distribution and bioavailability. In this study, the binding properties as well as the interaction of spectinomycin with Bovine serum albumin was investigated. Spectinomycin showed stronger binding with BSA at higher temperatures, which diminishes by decreasing the temperature. The binding constant of spectinomycin with BSA varied from 3.1 × 103 M?1 at 298 K to 6.3 × 103 M?1 at 313 K. By increasing the temperature, from 298 to 313 K, the binding affinity was increased by twofolds. Thermodynamic analysis indicated changes in albumin conformation and partial loss of folding during spectinomycin-albumin binding. The mild-moderate binding affinity of spectinomycin with BSA will be important in determining the drug–drug interactions at the binding sites of BSA. The presence of stronger binding ligand e.g., chloramphenicol, tetracyclines or diclofenac will compete with spectinomycin for its binding sites, therefore, lowering its serum albumin binding. The result of this study will be helpful in understanding of the binding properties and mechanisms of interaction of spectinomycin with bovine serum albumin.  相似文献   

17.
The interaction of bovine serum albumin (BSA) with raloxifene was assessed via fluorescence spectroscopy. The number of binding sites and the apparent binding constants between raloxifene and BSA were analyzed using the Tachiya model and Stern-Volmer equation, respectively. The apparent binding constant and the number of binding sites at 298 K were 2.33×105 L?mol?1 and 1.0688 as obtained from the Stern-Volmer equation and 2.00×105 L?mol?1 and 2.6667 from the Tachiya model. The thermodynamic parameters ΔH and ΔS were calculated to be 69.46 kJ?mol?1 and 121.12 J?K?1?mol?1, respectively, suggesting that the force acting between raloxifene and BSA was mainly a hydrophobic interaction. The binding distance between the donor (BSA) and acceptor (raloxifene) was 4.77 nm according to Förster’s nonradiational energy transfer theory. It was also found that common metal ions such as K+, Cu2+, Zn2+, Mg2+ and Ca2+ decreased the apparent association constant and the number of binding sites between raloxifene and BSA.  相似文献   

18.
The interaction of oleanolic acid (OA) and its glycosylated derivatives (LL-2 and LL-4) with human and bovine serum albumins were investigated using the methods of fluorescence spectroscopy. The spectroscopic analysis of the fluorescence quenching that occurs when OA and its derivatives interact with serum albumin indicates that these quenching constants are inversely correlated with temperature and the quenching process involves static interactions. The binding affinity of OA and OA-derived compounds to bovine serum albumin (BSA) and human serum albumin (HSA) follow the trend LL-4 > LL-2 > OA, suggesting that glycosylation of OA can facilitate its binding to serum albumins. Additionally, the binding affinity of these compounds to HSA is stronger than it is to BSA. The calculated thermodynamic parameters suggest that hydrophobic interactions dominate these interaction processes. We also found that only a single type of binding site exists for OA and its derivatives to HSA and BSA. Synchronous fluorescence results indicate that the binding of OA, LL-2 and LL-4 to BSA and HSA can lead to the conformational changes around the tryptophan residues of the two serum albumins. These results provided valuable clues to the pharmacokinetics and the pharmacologic activities of OA and its types of triterpenoid saponins derivatives.  相似文献   

19.
The interaction between cefixime (antibacterial) and tolcapone (Parkinson’s disease) drugs with bovine serum albumin (BSA) was investigated using several spectroscopic techniques viz. UV–Vis, fluorescence and circular dichroism. The thermodynamic parameters of the interactions were calculated, which indicated that the binding processes are spontaneous and H-bonding and van der Waals forces play a major role in BSA–cefixime interaction and hydrophobic interactions dominate BSA–tolcapone complexation. Cefixime quenches the intrinsic fluorescence of BSA by dynamic process while tolcapone through static process. The binding constant of the BSA–tolcapone complex (107 L mol?1) is found to be relatively higher than that of BSA–cefixime complex (104 L mol?1). The binding distance between BSA and cefixime and tolcapone is calculated to be 3.3 and 4.2 nm, respectively. Both fluorescence and circular dichrosim spectral studies confirmed conformational changes in BSA upon binding with these drugs. Molecular docking studies suggest the possible binding sites in the protein molecule.'  相似文献   

20.
The interaction between esculin and serum albumins was investigated to illustrate that the fluorescence resonance energy-transfer (FRET) affects the determination of the binding constants obtained by fluorescence quenching method. The binding constants (Ka) obtained by the double-logarithm curve for esculin–BSA and esculin–HSA were 1.02 × 107 and 2.07 × 104 L/mol, respectively. These results from synchronous fluorescence showed that the Tyr and Trp residues of HSA were affected more deeply than those in BSA. The excitation profile of esculin showed that in the presence of BSA and HSA, the S0 → S1 transition of esculin () appears, which is similar to the of BSA and HSA. The critical distance (R0) between BSA and esculin is higher than that of HSA, which showed that the affinity of esculin and HSA should be higher than that of BSA. After centrifugation, the concentrations of esculin bound to albumins were determined by means of the fluorescence of esculin. It was found that much more esculin was bound to HSA than to BSA. However, the bound models for BSA and HSA are almost the same. The concentration of esculin bound to serum albumin at first decreased with the addition of esculin and then increased. From above results, it can be concluded that the affinity of esculin and HSA should be higher than that of esculin and BSA. This example showed that in the presence of FRET, the binding constants between ligands and proteins based on fluorescence quenching might be deviated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号