首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Featuring an extra electron in the π* antibonding orbital, species with a 2-center-3-electron (2c3e) π bond without an underlying σ bond are scarcely known. Herein, we report the synthesis, isolation and characterization of a radical anion salt [K(18-C-6)]+{[(HCNDipp)2Si]2P2}⋅ (i.e. [K(18-C-6)]+ 3 ⋅) (18-C-6=18-crown-6, Dipp=2,6-diisopropylphenyl), in which 3 ⋅ features a perfectly planar Si2P2 four-membered ring. This species represents the first example of a Si- and P-containing analog of a bicyclo[1.1.0]butane radical anion. The unusual bonding motif of 3 ⋅ was thoroughly investigated via X-ray diffraction crystallography, electron paramagnetic resonance spectroscopy (EPR), and calculations by density functional theory (DFT), which collectively unveiled the existence of a 2c3e π bond between the bridgehead P atoms and no clearly defined supporting P−P σ bond.  相似文献   

2.
α-Metallated ylides have recently been reported to undergo phosphine by CO exchange at the ylidic carbon atom to form isolable ketenyl anions. Systematic studies on the tosyl-substituted yldiides, R3P=C(M)Ts (M=Li, Na, K), now reveal that carbonylation may lead to a competing metal salt (MTs) elimination. This side-reaction can be controlled by the choice of phosphine, metal cation, solvent and co-ligands, thus enabling the selective isolation of the ketenyl anion [Ts−CCO]M ( 2-M ). Complexation of 2-Na by crown ether or cryptand allowed structure elucidation of the first free ketenyl anion [Ts−CCO], which showed an almost linear Ts−C−C linkage indicative for a pronounced ynolate character. However, DFT studies support a high charge at the ketenyl carbon atom, which is reflected in the selective carbon-centered reactivity. Overall, the present study provides important information on the selectivity control of ketenyl anion formation which will be crucial for future applications.  相似文献   

3.
A series of crown ether complex cation ionic liquids (CECILs) were designed, synthesised and characterised by NMR spectroscopy, HRMS, thermogravimetric differential thermal analysis (TG-DTA) and elemental analysis. Their applications in various organic reactions were investigated: [15-C-5Na][OH], [15-C-5Na][OAc], [18-C-6K][OH] and [18-C-6K][OAc] (15-C-5=[15]crown-5; 18-C-6=[18]crown-6) efficiently catalysed the Michael addition of alkenes and relevant nucleophiles; [18-C-6K][OH] and [15-C-5Na][OH] effectively catalysed the Henry reaction of nitromethane and aromatic aldehydes; [18-C-6K][OH] has excellent catalytic efficiency for Knoevenagel condensation of aromatic aldehydes and malononitrile; PdCl(2) /[18-C-6K](3)[PO(4)]/K(2)CO(3) efficaciously catalysed the Heck reaction of olefins and aromatic halides; [18-C-6K][BrO(3)] can be used as both oxidant and solvent in the oxidation reaction of aromatic alcohols. The CECIL catalysts [15-C-5Na][OH] (Michael addition) and [18-C-6K][OH] (Henry reaction) can be recycled and reused several times without obvious loss of activity and their recovery is very simple.  相似文献   

4.
LGa(P2OC)cAAC 2 features a 1,2-diphospha-1,3-butadiene unit with a delocalized π-type HOMO and a π*-type LUMO according to DFT calculations. [LGa(P2OC)cAAC][K(DB-18-c-6)] 3 [K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene radical anion 3 ⋅ was isolated from the reaction of 2 with KC8 and dibenzo-18-crown-6. 3 reacted with [Fc][B(C6F5)4] (Fc=ferrocenium) to 2 and with TEMPO to [L−HGa(P2OC)cAAC][K(DB-18-c-6)] 4 [K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene anion 4 . The solid state structures of 2 , 3 K(DB-18-c-6], and 4 [K(DB-18-c-6] were determined by single crystal X-ray diffraction (sc-XRD).  相似文献   

5.
18-冠-6与Na2[M(mnt)2](M=Cu,Ni)配合物的合成与结构   总被引:6,自引:0,他引:6  
研究了18-冠-6分别与Na2[M(mnt)2][M=Cu,Ni;mnt=丁二腈烯二硫醇阴离子,C2S2(CN)^2^-~2]的反应,得到的配合物{[Na(18-C-6)][Na(18-C-6)(H2O)]}[Cu(mnt)2](1),[Na(18-C-6)(H2O)]2[Ni(mnt)2].(18-C-6)(2)通过元素分析、红外光谱、X射线单晶衍射进行了表征。两个配合物均为三斜晶系,空间群P1。1的晶体学结构数据:a=1.22697(19)nm,b=1.22780(19)nm,c=1.5665(3)nm,α=95.083(3)°,β=101.534(3)°,Υ=91.007(3)°,V=2.3016(6)nm^3,Z=2,Dcalcd=1.350g/cm^3,F(000)=976,R1=0.0726,wR2=0.1843.2的晶体学结构数据:a=1.11620(17)nm,b=1.22054(18)nm,c=1.27939(18)nm,α=111.647(2)°,β=29.792(3)°,Υ=103.201(2)°,V=2.5461(4)nm^3,Z=1,Dcalcd=1.304g/cm^3,F(000)=642,R1=0.0459,wR2=0.1003.1中的[Cu(mnt)2]^2^-通过mnt的氮原子与[Na(18-C-6)]^+中的钠原子成键,形成了一维链状结构;[Na(18-C-6)(H2O)]^+只起平衡电荷的作用。2中的[Ni(mnt)2]^2^-也通过配体的mnt氮原子与两个[Na(18-C-6)(H2O)]^+中的钠原子成键,形成稳定的中性配合物。  相似文献   

6.
By means of cyclic voltammetry (CV) and DFT calculations, it was found that the electron-acceptor ability of 2,1,3-benzochalcogenadiazoles 1 – 3 (chalcogen: S, Se, and Te, respectively) increases with increasing atomic number of the chalcogen. This trend is nontrivial, since it contradicts the electronegativity and atomic electron affinity of the chalcogens. In contrast to radical anions (RAs) [ 1 ].− and [ 2 ].−, RA [ 3 ].− was not detected by EPR spectroscopy under CV conditions. Chemical reduction of 1 – 3 was performed and new thermally stable RA salts [K(THF)]+[ 2 ].− ( 8 ) and [K(18-crown-6)]+[ 2 ].− ( 9 ) were isolated in addition to known salt [K(THF)]+[ 1 ].− ( 7 ). On contact with air, RAs [ 1 ].− and [ 2 ].− underwent fast decomposition in solution with the formation of anions [ECN], which were isolated in the form of salts [K(18-crown-6)]+[ECN] ( 10 , E=S; 11 , E=Se). In the case of 3 , RA [ 3 ].− was detected by EPR spectroscopy as the first representative of tellurium–nitrogen π-heterocyclic RAs but not isolated. Instead, salt [K(18-crown-6)]+2[ 3 -Te2]2− ( 12 ) featuring a new anionic complex with coordinate Te−Te bond was obtained. On contact with air, salt 12 transformed into salt [K(18-crown-6)]+2[ 3 -Te4- 3 ]2− ( 13 ) containing an anionic complex with two coordinate Te−Te bonds. The structures of 8 – 13 were confirmed by XRD, and the nature of the Te−Te coordinate bond in [ 3 -Te2]2− and [ 3 -Te4- 3 ]2− was studied by DFT calculations and QTAIM analysis.  相似文献   

7.
The unsaturated mixed-metal cluster anion [{Os3H(CO)10}2Ag]? has been prepared by the reaction of [(Ph3P)2N][Os3H(CO)11] with Ag[PF6], and the anion has been shown by an X-ray analysis to consist of an AgI atom linking together two “Os3H(CO)10” fragments. The electrochemistry of this complex has been investigated and it has been shown to undergo two one-electron reductions.  相似文献   

8.
Dimeric chlorobridge complex [Rh(CO)2Cl]2 reacts with two equivalents of a series of unsymmetrical phosphine–phosphine monoselenide ligands, Ph2P(CH2)nP(Se)Ph2 {n = 1( a ), 2( b ), 3( c ), 4( d )}to form chelate complex [Rh(CO)Cl(P∩Se)] ( 1a ) {P∩Se = η2‐(P,Se) coordinated} and non‐chelate complexes [Rh(CO)2Cl(P~Se)] ( 1b–d ) {P~Se = η1‐(P) coordinated}. The complexes 1 undergo oxidative addition reactions with different electrophiles such as CH3I, C2H5I, C6H5CH2Cl and I2 to produce Rh(III) complexes of the type [Rh(COR)ClX(P∩Se)] {where R = ? C2H5 ( 2a ), X = I; R = ? CH2C6H5 ( 3a ), X = Cl}, [Rh(CO)ClI2(P∩Se)] ( 4a ), [Rh(CO)(COCH3)ClI(P~Se)] ( 5b–d ), [Rh(CO)(COH5)ClI‐(P~Se)] ( 6b–d ), [Rh(CO)(COCH2C6H5)Cl2(P~Se)] ( 7b–d ) and [Rh(CO)ClI2(P~Se)] ( 8b–d ). The kinetic study of the oxidative addition (OA) reactions of the complexes 1 with CH3I and C2H5I reveals a single stage kinetics. The rate of OA of the complexes varies with the length of the ligand backbone and follows the order 1a > 1b > 1c > 1d . The CH3I reacts with the different complexes at a rate 10–100 times faster than the C2H5I. The catalytic activity of complexes 1b–d for carbonylation of methanol is evaluated and a higher turnover number (TON) is obtained compared with that of the well‐known commercial species [Rh(CO)2I2]?. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Reactions of [K(18‐crown‐6)]2[Pb2Se3] and [K([2.2.2]crypt)]2[Pb2Se3] with [Rh(PPh3)3Cl] in en (ethane‐1,2‐diamine) afforded ionic compounds with [Rh3(PPh3)63‐Se)2]? and [Rh3(CN)2(PPh3)43‐Se)2(μ‐PbSe)]3? anions, respectively. The latter contains a PbSe ligand, a rather uncommon homologue of CO that acts as a μ‐bridge between two Rh atoms. Quantum chemical calculations yield a significantly higher bond energy for PbSe than for CO, since the size of the ligand orbitals better matches the comparably rigid Rh‐Se‐Rh angles and the resulting Rh???Rh distance. To rationalize the bent coordination of the ligand, orbitals with significant ligand contributions and their dependence on the bonding angle were investigated in detail.  相似文献   

10.
Cationic [Ru(η5-C5H5)(CH3CN)3]+ complex, tris(acetonitrile)(cyclopentadienyl)ruthenium(II), gives rise to a very rich organometallic chemistry. Combined with diimine ligands, and 1,10-phenanthroline in particular, this system efficiently catalyzes diazo decomposition processes to generate metal-carbenes which undergo a series of original transformations in the presence of Lewis basic substrates. Herein, syntheses and characterizations of [CpRu(Phen)(L)] complexes with (large) lipophilic non-coordinating (PF6 and BArF) and coordinating TRISPHAT-N anions are reported. Complex [CpRu(η6-naphthalene)][BArF] ( [1][BArF] ) is readily accessible, in high yield, by direct counterion exchange between [1][PF6] and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF) salts. Ligand exchange of [1][BArF] in acetonitrile generated stable [Ru(η5-C5H5)(CH3CN)3][BArF] ( [2][BArF] ) complex in high yield. Then, the desired [CpRu(Phen)(CH3CN)] ( [3] ) complexes were obtained from either the [1] or [2] complex in the presence of the 1,10-phenanthroline as ligand. For characterization and comparison purposes, the anionic hemilabile ligand TRISPHAT−N (TTN) was introduced on the ruthenium center, from the complex [3][PF6] , to quantitatively generate the desired complex [CpRu(Phen)(TTN)] ( [4] ) by displacement of the remaining acetonitrile ligand and of the PF6 anion. Solid state structures of complexes [1][BArF] , [2][BArF] , [3][BArF] , [3][PF6] and [4] were determined by X-ray diffraction studies and are discussed herein.  相似文献   

11.
A new complex compound, [K2(18-crown-6)2[K(18-crown-6)(EtOH)]2[Er(NCS)6](SCN) (I), was synthesized and its crystal structure was studied by X-ray diffraction. In this work, the synthes and X-ray difraction stady of the crystals of a new complex, hexakis (isothiocyanato) erbiu(III) thiocyanate bis(18-crown-6) dipotassium bis(18-crown-6) ethanolpotassium], [K2(18-crown-6)2][K(18-crown-6)(ETON)]2[Er(NCS)6(SCN)(I)] are described. In crystal I, the alternating [Er(NCS)6]3? anions and binuclear complex cation [K(18-crown-6)2]2+ from infinite chains via the F-S bonds, while two complex cations [K(18-crown-6)(ETON)]+ and the statistically disordered SCN? anion between them are linked by the hydragen bonds O-H…S and O-H…N. Complex I contains the host-guest complex cations [K2(18-crown-6)2)]2+ and [K(18-crown-6)(ETON)]+ [1]. The alternating octabedral [Er(NCS)6]3? anions and binuclear complex cations [K2(18-crown-6)2]2+of crystal I form infinite chains via the K-S bonds, while two complex cations [K(18-crown-6)(EtOH)]+ and the statistically disordered SCN? anion lying between them are linked by interionic hydrogen bonds O-H…S and O-H…N. Complex I contains the host-guest complex cations [K2(18-crown-6)2]2+ and [K(18-crown-6)(EtOH)]+ [1].  相似文献   

12.
研究了18-C-6分别与k~2[Pd(NO~2~4],k~2[Pt(NO~2)~4])的反应,并通过元素分析、红外光谱、单晶X射线衍射对生成的配合物[k(18-C-6)]~2[Pd(NO~2)~4](H~2O)~0.5(1)和[k(18-C-6)]~2,k~2[Pt(NO~2)~4])(H~2O)(2)进行了表征,两个配合匀匀为单斜晶系,空间P2~1/c.1的晶体学数据:α=1,7104(3),c=1,5763(3)nm,β=93.49(3)°,V=3.9987(14)nm^3,Z=4,D~c=1.507g/cm^3,F(000)=1880,R~1=0.0681,~wR~2=0.1004。2的晶体学数据:a=1.1312(3)nm,b=1.4227(2)nm,c=1.2266(3)nm,β93.141(10)°,V=1.9711(8)nm^3,Z=4,D~c=1.614g/cm^3,F(000)=936,R~1=0.0265,~wR~2=0.0721。在固态,配合物1具有[(18-c-6)]~2[Pd(NO~2)~4](H~2O)(1a)和[(18---c-6)]~2[Pd·(NO~2)~4](1b)两个分子,两者比例这1:1前者相邻的两个分子通过水分是的氧原子相连接形成一维链状结构,后者形面假一维链状结构,在配合物2中相邻的两个分子通过品分子中的氧原子相连接形成一维链状结构。  相似文献   

13.
Reactions of monooxidized thioyl and selenoyl bis(phosphanyl)amine ligands C10H7‐1‐N(P(E)Ph2)(PPh2) [E = S ( 1 ), Se ( 2 )] with Mo(CO)4(pip)2 and W(CO)4(cod) afforded the complexes [M(CO)4{ 1 ‐κ2P,S}] [M = Mo ( 3 ), W ( 4 )] and [M(CO)4{ 2 ‐κ2P,Se}] [M = Mo ( 5 ), W ( 6 )]. Complexes 3 – 6 were characterized by multinuclear NMR (1H, 13C, 31P, and 77Se NMR) and IR spectroscopy. Crystal‐structure determinations were carried out on 3 , 5 , and 6 , which represent the first examples of structurally characterized complexes of such ligands with group‐6 metal carbonyls.  相似文献   

14.
Two benzo-18-crown-6 (B18-C-6) complexes: [Na(B18-C-6)]2[Pd(SCN)4](H2O)({bf 1}) and [Na(B18-C-6)]2[Pt(SCN)4]...0.5C2H4C12 (2)have been synthesized and characterized by elemental analysis, IR spectrum and X-raydiffraction analysis. The crystal of complex 1 belongs to monoclinic, space group P21/n with cell dimensions, a = 1.0481(3), b = 1.2864 (3), c = 1.7003 (4) nm, = 93.626(4)°, V = 2.2879 (9) nm3, Z = 2, Dcalcd = 1.491 g/cm3, F(000) = 1060, R1 = 0.0562, wR2 = 0.1412 and 2 is triclinic, spacegroup P1 with cell dimensions, a = 0.9581(3), b = 1.2173 (3), = 2.1198 (6) nm, = 79.522(4), = 77.911(4), = 78.617(4)°, V = 2.3442(11) nm3 Z = 2, Dcalcd = 1.626 g/cm3, F(000) = 1154, R1 = 0.0515, wR2 = 0.0612.Two complexes show one-dimensional chain of [Na(B18-C-6)]+ complex cations and [M(SCN)4]2- (M = Pd, Pt) complex anion bridged by Na–O–Na interactions of H2O molecule or Na-O bond of B18-C-6 between adjacent [Na(B18-C-6)]+ units respectively.  相似文献   

15.
合成了苯并18-冠-6(B18-C-6)与K_2[Pd(SCN)_4]生成的配合物[K(B18-C-6 )]_(12) [Pd(SCN)_4] (1), [K(B18-C-6)]_2[Pt(SCN)_4] (2)和[K(B18-C-6)]_2 [Pt(SCN)_4]·C_2H_4Cl_2 (3),并通过元素分析、红外光谱、单晶X射线衍射进行 了表征。1和2为单斜晶系,空间群P2_l/n,晶体学数据:1, a = 1.00970(17) nm, b = 1.3157(2) nm, c = 1.7303(3) nm, β = 94.841(2)°, V = 2.2852(7) nm~3, Z = 2, F(000) = 1136, R_1 = 0.0257。3为三斜晶系,空间群P1,晶体学 数据:a = 0.95914(18) nm, b = 1.2137(2) nm, c = 2313(2) nm, α = 63.693 (2)°, β = 76.293(2)°, γ-1.2406(4) n~3, Z = 1 F(000)618,R_1 = 0.0366 。在固态,三个配合物相邻的两个[K(B18-C-6)]~+基团通过冠醚氧化原子与钾的 子的相边接而形成一维链状结构。  相似文献   

16.
[1,2,5]Thiadiazolo[3,4-c][1,2,5]thiadiazole (1) is synthesized in 62% yield by fluoride ion-induced condensation of 3,4-difluoro-1,2,5-thiadiazole with (Me(3)SiN=)(2)S. The reversible electrochemical reduction of 1 leads to the long-lived [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazolidyl radical anion (2) and further to the dianion (3). The radical anion 2 is also obtained by the chemical reduction of the precursor 1 with t-BuOK in MeCN. The radical anion 2 is characterized by ESR spectroscopy in solution and in the crystalline state. The stable salts [K(18-crown-6)][2] and [K(18-crown-6)][2].MeCN (8 and 9, respectively) are isolated from the spontaneous decomposition of the [K(18-crown-6)][PhXNSN] (6, X = S; 7, X = Se) salts in MeCN solution followed by XRD characterization. The radical anion 2 acts as a bridging ligand in 8 and as chelating ligand in 9. The structural changes observed by XRD in going from 1 to 2 are explained by means of DFT/(U)B3LYP/6-311+G calculations.  相似文献   

17.
Treatment of 1,8‐bis(diphenylphosphino)naphthalene (dppn, 1 ) with stoichiometric amounts of sulfur or selenium in toluene at 80 °C selectively afforded the diphosphine monochalcogenides 1‐Ph2P(C10H6)‐8‐P(:S)Ph2 (dppnS, 2 a ) and 1‐Ph2P(C10H6)‐8‐P(:Se)Ph2 (dppnSe, 2 b ). The 31P{1H} NMR spectrum of 2 b showed an unusually large 5J(P–Se) value, which indicates a significant through‐space coupling component. The monosulfide acted as a bidentate P,S‐ligand towards platinum(II) ( 3 a ), whereas the corresponding monoselenide complex ( 3 b ′) lost elemental selenium with formation of the previously reported complex [PtCl2(dppn)‐P,P′] ( 3 ). Treatment of dppnSe with [(nor)Mo(CO)4] (nor = norbornadiene) led to formation of [(dppnSe)Mo(CO)4P,Se] ( 3 b ). Solutions of the latter slowly deposited Se with formation of [(dppn)Mo(CO)4P,P′] ( 4 ) which was also obtained by independent synthesis from 1 and [(nor)Mo(CO)4]. All isolated new compounds were characterised by a combination of 31P, 1H, 13C and 77Se ( 2 b ) NMR spectroscopy, IR spectroscopy, mass spectrometry and elemental analysis. Single‐crystal X‐ray structure determinations were performed for dppnSe ( 2 b ), [PtCl2(dppnS)‐P,S] ( 3 a ), [(dppnSe)Mo(CO)4P,Se] ( 3 b ) and [(dppn)Mo(CO)4P,P′] ( 4 ). In 2 b steric effects cause the naphthalene ring to be distorted and force the phosphorus atoms by 65 and 59 pm to opposite sides of the best naphthalene plane. In the metal complexes 3 a , 3 b and 4 the phosphino‐phosphinochalcogenyl systems act as bidentate ligands through the P and the chalcogen atoms. The naphthalene systems are again distorted. The two independent molecules of 4 differ in their conformations.  相似文献   

18.
[K(18C6)]2[Pd2Cl6] ( 1 ) (18C6 = 18‐crown‐6) was found to react with pyridines in a strictly stoichiometric ratio 1 : 2 in methylene chloride or nitromethane to yield trichloropalladate(II) complexes [K(18C6)][PdCl3(py*)] (py* = py, 2a ; 4‐Bnpy, 2b ; 4‐tBupy, 2c ; Bn = benzyl; tBu = tert‐butyl). The reaction of 1 with pyrimidine (pyrm) in a 1 : 1 ratio led to the formation of the pyrimidine‐bridged bis(trichloropalladate) complex [K(18C6)]2[(PdCl3)2(μ‐pyrm)] ( 3 ). The identities of the complexes were confirmed by means of NMR spectroscopy (1H, 13C) and microanalysis. The X‐ray structure analysis of 2a reveals square‐planar coordination of the Pd atom in the [PdCl3(py)]? anion. The pyridine plane forms with the complex plane an angle of 55.8(2)°. In the [K(18C6)]+ cation the K+ lies outside the mean plane of the crown ether (defined by the 6 O atoms) by 0.816(1) Å. There are tight K···Cl contacts between the cation and the anion (K···Cl1 3.340(2) Å, K···Cl2 3.166(2) Å). To gain an insight into the conformation of the [PdCl3(py)]? anion, DFT calculations were performed showing that the equilibrium structure ( 6eq ) has an angle between the pyridine ligand and the complex plane of 35.3°. Rotation of the pyridine ligand around the Pd–N vector exhibited two transition states where the pyridine ligand lies either in the complex plane ( 6TS pla, 0.87 kcal/mol above 6eq ) or is perpendicular to it ( 6TS per, 3.76 kcal/mol above 6eq ). Based on an energy decomposition analysis the conformation of the anion is discussed in terms of repulsive steric interactions and of stabilizing σ and π orbital interactions between the PdCl3? moiety and the pyridine ligand.  相似文献   

19.
The analogy of the reactivity of group 1 phosphides to that of FLPs is further demonstrated by reactions with CO, affording a new synthetic route to acyl‐phosphide anions. The reaction of [K(18‐crown‐6)][PtBu2] ( 1 ) with CO affords [(18‐crown‐6)K?THF2][ZtBuP=C(tBu)O] ( 2?THF2 ) as the major product, and the minor product [K6(18‐crown‐6)][(tBu2PCO)2]3 ( 3 ). Species 2 reacts with either BPh3 or additional CO to give [K(18‐crown‐6)][(Ph3B)tBuPC(tBu)O] ( 4 ) and [K(18‐crown‐6)][(OCtBu)2P] ( 5 ), respectively. The acyl‐phosphide anion 2 is thought to be formed by a photochemically induced radical process involving a transient species with triplet carbene character, prompting 1,2‐tert‐butyl group migration. A similar process is proposed for the subsequent reaction of 2 with CO to give 5 .  相似文献   

20.
The crystalline compound [K([18]crown-6){C6H4(SiMe3)2-1,4}] (1) was prepared by the low-temperature reduction of the para-disilylated benzene with K/[18]crown-6 in toluene followed by recrystallisation from the same solvent. Reduction of 1,2,4,5-tetrasilylated benzene with 2(K/[18]crown-6) in toluene produced a hydrocarbon-insoluble powder identified as the dianionic derivative [K([18]crown-6)]2[C6H2(SiMe3)4-1,2,4,5)] (2), which upon crystallisation from THF/Et2O yielded [K([18]crown-6)(THF)2][C6H2(SiMe3)4-1,2,4,5] (3). An X-ray diffraction study revealed that 1 comprised a contact ion pair with the crown-encapsulated K cation η5-connected to the planar ring of the substituted benzene radical anion, while 3 contained a well separated cation and anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号