首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 378 毫秒
1.
A series of pH/redox dual stimuli‐responsive poly(2‐methacryloyloxyethyl phosphorylcholine)25block‐poly(l ‐histidine)n (p[MPC])25b‐p[His]n, n = 20, 35, 50, and 75) copolymers consisting of a pH‐responsive p(His)n block and a biocompatible phospholipid analog p(MPC) block connected by a redox‐responsive disulfide linker have been synthesized. The block copolymers are self‐assembled into uniform micelles (~100 nm) in which doxorubicin (Dox) is efficiently encapsulated. The in vitro release profile shows an enhanced release of Dox at low pH (5.0) in 10 mM glutathione (GSH). The in vitro cell viability assays performed using various cell lines show that the blank hybrid micelles have no acute or intrinsic toxicity. A pH‐dependent cytotoxicity is observed with the Dox‐loaded micelles, especially at pH 5.0. Moreover, confocal microscopy images and flow cytometry results show the pH‐dependent cellular uptake of Dox‐loaded micelles. Therefore, the Dox‐loaded micelles can be considered a good candidate for cancer therapy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2061–2070  相似文献   

2.
Amphiphilic diblock copolymers with various block compositions were synthesized on poly(2‐ethyl‐2‐oxazoline) (PEtOz) as a hydrophilic block and poly(4‐methyl‐ε‐caprolactone) (PMCL) or poly(4‐phenyl‐ε‐caprolactone) (PBCL) as a hydrophobic block. These PEtOz‐b‐PMCL and PEtOz‐b‐PBCL copolymers consisting of soft domains of amorphous PEtOz and PM(B)CL had no melting endothermal peaks but displayed Tg. The lower critical solution temperature (LCST) values for the PEtOz‐b‐PMCL, and the PEtOz‐b‐PBCL aqueous solution were observed to shift to lower temperature than PEtOz homopolymers. Their aqueous solutions were characterized using fluorescence techniques and dynamic light scattering (DLS). The block copolymers formed micelles with critical micelle concentrations (CMCs) in the range 0.6–11.1 mg L?1 in an aqueous phase. As the length of the hydrophobic PMCL or PBCL blocks elongated, lower CMC values were generated. The mean diameters of the micelles were between 127 and 318 nm, with PDI in the range of 0.06–0.21, suggesting nearly monodisperse size distributions. The drug entrapment efficiency and drug‐loading content of micelles depend on block polymer compositions. In vitro cell viability assay showed that PEtOz‐b‐PMCL has low cytotoxicity. Doxorubicin hydrochloride (DOX)‐loaded micelles facilitated human cervical cancer (HeLa) cell uptake of DOX; uptake was completed within 2 h, and DOX was able to reach intracellular compartments and enter the nuclei by endocytosis. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2769–2781  相似文献   

3.
The well‐defined, thermosensitive and biodegradable graft copolymers, poly(N‐isopropylacrylamide)‐b‐[2‐hydroxyethyl methacrylate‐poly(ε‐caprolactone)]n (PNIPAAm‐b‐(HEMA‐PCL)n) (n = 3 or 9), were synthesized by combining reversible addition‐fragmentation chain transfer polymerization and macromonomer method. The copolymers were able to self‐assemble into micelles in water with low critical micellar concentration and demonstrated temperature sensitivity with a lower critical solution temperature at around 36 °C. Transmission electron microscopy shows that the micelles exhibit a nanosized spherical morphology within a size range of 30–100 nm. The PNIPAAm‐b‐(HEMA‐PCL)3 copolymer exhibited biodegradation and low cytotoxicity. The paclitaxel‐loaded PNIPAAm‐b‐(HEMA‐PCL)3 micelles displayed thermosensitive controlled release behavior, which indicates potential as drug carriers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5354–5364, 2007  相似文献   

4.
Thermosensitive polylactide‐block‐poly(N‐isopropylacrylamide) (t‐PLA‐b‐PNIPAAm) tri‐armed star block copolymers were synthesized by atom transfer radical polymerization (ATRP) of monomer NIPAAm using t‐PLA‐Cl as macroinitiator. The synthesis of t‐PLA‐Cl was accomplished by esterification of star polylactides (t‐PLA) with 2‐chloropropionyl chloride using trimethylolpropane as a center molecule. FT‐IR, 1H NMR, and GPC analyses confirmed that the t‐PLA‐b‐PNIPAAm star block copolymers had well‐defined structure and controlled molecular weights. The block copolymers could form core‐shell micelle nanoparticles due to their hydrophilic‐hydrophobic trait in aqueous media, and the critical micelle concentrations (CMC) were from 6.7 to 32.9 mg L?1, depending on the system composition. The as‐prepared micelle nanoparticles showed reversible phase changes in transmittance with temperature: transparent below low critical solution temperature (LCST) and opaque above the LCST. Transmission electron microscopy (TEM) observations revealed that the micelle nanoparticles were spherical in shape with core‐shell structure. The hydrodynamic diameters of the micelle nanoparticles depended on copolymer compositions, micelle concentrations and media. MTT assays were conducted to evaluate cytotoxicity of the camptothecin‐loaded copolymer micelles. Camptothecin drug release studies showed that the copolymer micelles exhibited thermo‐triggered targeting drug release behavior, and thus had potential application values in drug controlled delivery. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4429–4439  相似文献   

5.
Disulfide‐centered star‐shaped poly(ε‐benzyloxycarbonyl‐l ‐lysine)‐b‐poly(ethylene oxide) block copolymers (i.e., A2B4 type Cy‐PZlys‐b‐PEO) were synthesized by the combination of ring‐opening polymerization and thiol‐yne chemistry. Their molecular structures and physical properties were characterized in detail by FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscope. Despite mainly exhibiting an α‐helix conformation, the inner PZlys blocks within copolymers greatly prohibited the crystallinity of the outer PEO blocks and presented a liquid crystal phase transition behavior in solid state. These block copolymers Cy‐PZlys‐b‐PEO self‐assembled into nearly spherical micelles in aqueous solution, which had a hydrophobic disulfide‐centered PZlys core surrounded by a hydrophilic PEO corona. As monitored by means of DLS and TEM, these micelles were progressively reduced to smaller micelles in 10 mM 1,4‐dithiothreitol at 37 °C and finally became ones with a half size, demonstrating a reduction‐sensitivity. Despite a good drug‐loading property, the DOX‐loaded micelles of Cy‐PZlys‐b‐PEO exhibited a reduction‐triggered drug release profile with an improved burst‐release behavior compared with the linear counterpart. Importantly, this work provides a versatile strategy for the synthesis of the disulfide‐centered star‐shaped polypeptide block copolymers potential for intracellular glutathione‐triggered drug delivery systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2000–2010  相似文献   

6.
Redox‐responsive core cross‐linked (CCL) micelles of poly(ethylene oxide)‐b‐poly(furfuryl methacrylate) (PEO‐b‐PFMA) block copolymers were prepared by the Diels‐Alder click‐type reaction. First, the PEO‐b‐PFMA amphiphilic block copolymer was synthesized by the reversible addition‐fragmentation chain transfer polymerization. The hydrophobic blocks of PFMA were employed to encapsulate the doxorubicin (DOX) drug, and they were cross‐linked using dithiobismaleimidoethane at 60 °C without any catalyst. Under physiological circumstance, the CCL micelles demonstrated the enhanced structural stability of the micelles, whereas dissociation of the micelles took place rapidly through the breaking of disulfide bonds in the cross‐linking linkages under reduction environment. The core‐cross‐linked micelles showed fine spherical distribution with hydrodynamic diameter of 68 ± 2.9  nm. The in vitro drug release profiles presented a slight release of DOX at pH 7.4, while a significant release of DOX was observed at pH 5.0 in the presence of 1,4‐dithiothreitol. MTT assays demonstrated that the block copolymer did not have any practically cytotoxicity against the normal HEK293 cell line while DOX‐loaded CCL micelles exhibited a high antitumor activity towards HepG2 cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3741–3750  相似文献   

7.
A straightforward strategy is proposed for the synthesis of novel, amphiphilic block–graft MPEG‐b‐(PαN3CL‐g‐alkyne) degradable copolymers. First, the ring‐opening polymerization of α‐chloro‐ε‐caprolactone (αClCL) was initiated by hydroxy‐terminated macroinitiator monomethoxy poly(ethylene glycol) (MPEG) with SnOct2 as the catalyst. In a second step, pendent chlorides were converted into azides by the reaction with sodium azide. Finally, various kinds of terminal alkynes were reacted with pendent azides by copper‐catalyzed Huisgen's 1,3‐dipolar cycloaddition, and thus a “click” reaction. These copolymers were characterized by differential scanning calorimetry (DSC), 1H NMR, IR, and gel permeation chromatography. By fixing the length of the MPEG block and increasing the length of PαClCL (or PαN3CL) block, an increase tendency in Tgs was observed. However, the copolymers of MPEG‐b‐PαClCL and MPEG‐b‐PαN3CL were semicrystalline when the Mn of MPEG was above 2000 g mol?1. The block–graft copolymers formed micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range of 1.4–12.0 mg L?1 depending on the composition of polymers. The lengths of hydrophilic segment influence the shape of the micelle. The mean hydrodynamic diameters of the micelles from dynamic light scattering were in the range of 90–160 nm. In vitro hydrolytic degradation of block–graft copolymers is faster than the corresponding block copolymers. The drug entrapment efficiency and the drug loading content of micelles depending on the composition of block–graft polymers were described. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4320–4331, 2008  相似文献   

8.
Carbosilane fine particles were synthesized by core‐crosslinking of carbosilane block copolymer micelles and they were pyrolytically transformed into silica nanoparticles. The carbosilane block copolymer, poly(1‐(3‐butenyl)‐1‐methylsilacyclobutane)‐block‐polystyrene, (polyBMSB‐b‐polySt), [(m, n) = (31, 16), (54, 30), and (75, 28)], was synthesized by anionic polymerization of BMSB and St, where m and n represent polymerization degrees of BMSB and St segments, respectively. The block copolymer formed micelles in N,N‐dimethylformamide (DMF). The hydrodynamic diameters (Dh) of the micelles evaluated by dynamic light scattering ranged from 40 to 158 nm depending on the copolymer molecular weight. The core of the micelle was cross‐linked by Pt‐catalyzed hydrosilation with 1,2‐bis(dimethylsilylethane). The Dh of the core‐cross‐linked micelles in THF ranged from 56 to 164 nm. These precursor particles were pyrolyzed at 850 °C under N2 to give ceramic nanoparticles. The diameters of the spherical ceramic particles estimated by AFM ranged from 25 to 60 nm. X‐ray fluorescence analysis of the ceramic products revealed that it consisted of mainly SiO2 rather than SiC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3778–3787, 2005  相似文献   

9.
Well‐defined tertiary amine‐based pH‐responsive homopolymers and block copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using 4‐cyanopentanoic acid dithiobenzoate (CPAD) as the RAFT agent for homopolymers and a poly(ethylene glycol) (PEG) macro‐RAFT agent for the block copolymers. 1H NMR and gel permeation chromatography results confirmed the successful synthesis of these homopolymers and block copolymers. Kinetics studies indicated that the formation of both the homopolymers and the block copolymers were well defined. The pKa titration experiments suggested that the homopolymers and the related block copolymers have a similar pKa. The dynamic light scattering investigation showed that all of the block copolymers underwent a sharp transition from unimers to micelles around their pKa and the hydrodynamic diameter (Dh) was not only dependent on the molecular weight but also on the composition of the block copolymers. The polymer solution of PEG‐b‐PPPDEMA formed the largest micelle compare to the PEG‐b‐PDPAEMA and PEG‐b‐PDBAEMA with a similar molecular weight. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1010–1022  相似文献   

10.
Liquid crystalline block copolymers (LCBCPs) are fascinating for their combining molecular level liquid crystalline orders and microphase separated multidomain morphologies. Here in this article, a series of PEG‐containing side‐chain discotic LCBCPs of PEG‐bPmn with variant spacer length m = 6, 10 and degree of polymerization (DP) of discotic LC block from n = 10 to 45, have been well‐synthesized via reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. The RAFT process mediated by macromolecular chain transfer agent (macroCTA) shows remarkable monomer concentration dependence. The influence of the introduced PEG block on the nano‐scale microphase‐segregation and mesophase organization is closely related to the side‐chain triphenylene (TP) discogens stacking mode dependent on the spacer length. Wherein, the PEG‐bP6n series with a six‐methylene spacer exhibit consistent microphase separation with slightly disturbed yet ordered columnar structures. While for PEG‐bP10n series with a longer ten‐methylene spacer, the columnar organization in the copolymers is even improved in contrast with the low order of randomly TP stacking in their corresponding homopolymers. This work offers a viable and inspiring pathway for controlled synthesis of block copolymers with bulky side groups, as well as enhances in‐depth understanding of the hierarchical superstructure organization in discotic units involved complex block copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2544–2553  相似文献   

11.
The first use of PSnb‐PEOmb‐PSn block copolymers (PS = polystyrene, PEO = poly(ethylene oxide)) as solid hosts for iodine/iodide electrolytes in dye‐sensitized solar cells (DSSCs) is described. Using the benchmark photosensitizer N719, DSSC based on the quasi solid‐state electrolytes afforded efficiencies up to 6.7%, to be compared with an efficiency of 7.3% obtained in similar conditions with a conventional iodine/iodide liquid electrolyte. By varying the PS:PEO relative volume ratio in the block copolymers different properties and morphologies were obtained. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 719–727  相似文献   

12.
An approach for the preparation of block copolymer vesicles through ultrasonic treatment of polystyrene‐block‐poly(2‐vinyl pyridine) (PS‐b‐P2VP) micelles under alkaline conditions is reported. PS‐b‐P2VP block copolymers in toluene, a selective solvent for PS, form spherical micelles. If a small amount of NaOH solution is added to the micelles solution during ultrasonic treatment, organic‐inorganic Janus‐like particles composed of the PS‐b‐P2VP block copolymers and NaOH are generated. After removal of NaOH, block copolymer vesicles are obtained. A possible mechanism for the morphological transition from spherical micelles to vesicles or Janus‐like particles is discussed. If the block copolymer micelles contain inorganic precursors, such as FeCl3, hybrid vesicles are formed, which may be useful as biological and chemical sensors or nanostructured templates. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 953–959  相似文献   

13.
This study synthesized thermo‐sensitive amphiphilic block‐graft PNiPAAm‐b‐(PαN3CL‐g‐alkyne) copolymers through ring‐opening polymerization of α‐chloro‐ε‐caprolactone (αClCL) with hydroxyl‐terminated macroinitiator poly(N‐isopropylacrylamide) (PNiPAAm), substituting pendent chlorides with sodium azide. This was then used to graft various kinds of terminal alkynes moieties by means of the copper‐catalyzed Huisgen's 1,3‐dipolar cycloaddition (“click” reaction). 1H NMR, FTIR, and gel permeation chromatography (GPC) was used to characterize these copolymers. The solubility of the block‐graft copolymers in aqueous media was investigated using turbidity measurement, revealing a lower critical solution temperature (LCST) in the polymers. These solutions showed reversible changes in optical properties: transparent below the LCST, and opaque above the LCST. The LCST values were dependant on the composition of the polymer. With critical micelle concentrations (CMCs) in the range of 2.04–9.77 mg L?1, the block copolymers formed micelles in the aqueous phase, owing to their amphiphilic characteristics. An increase in the length of hydrophobic segments or a decrease in the length of hydrophilic segments amphiphilic block‐graft copolymers produced lower CMC values. The research verified the core‐shell structure of micelles by 1H NMR analyses in D2O. Transmission electron microscopy was used to analyze the morphology of the micelles, revealing a spherical structure. The average size of the micelles was in the range of 75–145 nm (blank), and 105–190 nm (with drug). High drug entrapment efficiency and drug loading content were observed in the drug micelles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Our objective was to synthesize and evaluate lactic acid‐ and carbonate‐based biodegradable core‐ and core‐corona crosslinkable copolymers for anticancer drug delivery. Methoxy poly(ethylene glycol)‐b‐poly(carbonate‐co‐lactide‐co‐5‐methyl‐5‐allyloxycarbonyl‐1,3‐dioxane‐2‐one) [mPEG‐b‐P(CB‐co‐LA‐co‐MAC)] and methoxy poly(ethylene glycol)‐b‐poly(acryloyl carbonate)‐b‐poly(carbonate‐co‐lactide) [mPEG‐b‐PMAC‐b‐P(CB‐co‐LA)] copolymers were synthesized by ring‐opening polymerization of LA, CB, and MAC using mPEG as an macroinitiator and 1,8‐diazabicycloundec‐7‐ene as a catalyst. These amphiphilic copolymers which exhibited low polydispersity and critical micelle concentration values (0.8–1 mg/L) were used to prepare micelles with or without drug and stabilized by crosslinking via radical polymerization of double bonds introduced in the core and interface to improve stability. mPEG114b‐P(CB8co‐LA35co‐MAC2.5) had a higher drug encapsulation efficiency (78.72% ± 0.15%) compared to mPEG114b‐PMAC2.5b‐P(CB9co‐LA39) (20.29% ± 0.11%).1H NMR and IR spectroscopy confirmed successful crosslinking (~70%) while light scattering and transmission electron microscopy were used to determine micelle size and morphology. Crosslinked micelles demonstrated enhanced stability against extensive dilution with aqueous solvents and in the presence of physiological simulating serum concentration. Furthermore, bicalutamide‐loaded crosslinked micelles were more potent compared to non‐crosslinked micelles in inhibiting LNCaP cell proliferation irrespective of polymer type. Finally, these results suggest crosslinked micelles to be promising drug delivery vehicles for chemotherapy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
Dendritic polymers‐based unimolecular micelles with enhanced stability are attractive carriers. However, the preparation of dendrimers or dendrons with higher generation remains substantially synthetic challenge due to the increased steric hindrance, multistep and tedious preparation, and low yields. The adoption of Boltorn H40, a commercially available dendritic polymer of Boltorn family containing multiple hydroxyl groups with various functionalities as a dendrimer‐based starting core template for the generation of hyperbranched polymers, offers a straightforward solution to address this problem. To develop universal strategies toward H40‐based amphiphilic block copolymers, the “grafting from” and “grafting to” approaches were both applied in this study. The reduction‐insensitive block copolymers, H40‐b‐poly(ɛ‐caprolactone)‐b‐poly(oligo(ethylene glycol) monomethyl ether methacrylate) (H40‐b‐PCL‐b‐POEGMA), were synthesized by “grafting from” including sequential ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). The core structure and the polymer composition of the nonreducible amphiphilic hyperbranched block copolymers were optimized toward better properties and performance for drug delivery applications, and H40‐PCL15b‐POEGMA23 was screened as the best polymer construct relative to H20‐PCL15b‐POEGMA23 and H40‐PCL15b‐POEGMA32 in terms of micelle stability and drug loading capacity. Therefore, the reducible H40‐b‐PCL‐SS‐POEGMA with an identical core and polymer composition to that of H40‐PCL15b‐POEGMA23 was further prepared by “grafting to” using click coupling between H40‐PCL‐azide and P(OEGMA)‐alkyne. The delivery efficacy evaluated by an in vitro cytotoxicity study revealed that the resulting DOX‐loaded reducible micelles of H40‐PCL15‐SS‐POEGMA23 produced greater cytotoxicity in cancer cells than in normal cells and macrophages, therefore, are promising carriers for anticancer drug delivery. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1383–1394  相似文献   

16.
With the aim of accessing colloidally stable, fiberlike, π‐conjugated nanostructures of controlled length, we have studied the solution self‐assembly of two asymmetric crystalline–coil, regioregular poly(3‐hexylthiophene)‐b‐poly(2‐vinylpyridine) (P3HT‐b‐P2VP) diblock copolymers, P3HT23b‐P2VP115 (block ratio=1:5) and P3HT44b‐P2VP115 (block ratio=ca. 1:3). The self‐assembly studies were performed under a variety of solvent conditions that were selective for the P2VP block. The block copolymers were prepared by using Cu‐catalyzed azide–alkyne cycloaddition reactions of azide‐terminated P2VP and alkyne end‐functionalized P3HT homopolymers. When the block copolymers were self‐assembled in a solution of a 50 % (v/v) mixture of THF (a good solvent for both blocks) and an alcohol (a selective solvent for the P2VP block) by means of the slow evaporation of the common solvent; fiberlike micelles with a P3HT core and a P2VP corona were observed by transmission electron microscopy (TEM). The average lengths of the micelles were found to increase as the length of the hydrocarbon chain increased in the P2VP‐selective alcoholic solvent (MeOH<iPrOH<nBuOH). Very long (>3 μm) fiberlike micelles were prepared by the dialysis of solutions of the block copolymers in THF against iPrOH. Furthermore the widths of the fibers were dependent on the degree of polymerization of the chain‐extended P3HT blocks. The crystallinity and π‐conjugated nature of the P3HT core in the fiberlike micelles was confirmed by a combination of UV/Vis spectroscopy, photoluminescence (PL) measurements, and wide‐angle X‐ray scattering (WAXS). Intense sonication (iPrOH, 1 h, 0 °C) of the fiberlike micelles formed by P3HT23b‐P2VP115 resulted in small (ca. 25 nm long) stublike fragments that were subsequently used as initiators in seeded growth experiments. Addition of P3HT23b‐P2VP115 unimers to the seeds allowed the preparation of fiberlike micelles with narrow length distributions (Lw/Ln <1.11) and lengths from about 100‐300 nm, that were dependent on the unimer‐to‐seed micelle ratio.  相似文献   

17.
Three tetrafunctional bromoxanthate agents (Xanthate3‐Br, Xanthate2‐Br2, and Xanthate‐Br3) were synthesized. Initiative atom transfer radical polymerizations (ATRP) of styrene (St) or reversible addition fragmentation chain transfer (RAFT) polymerizations of vinyl acetate (VAc) proceeded in a controlled manner in the presence of Xanthate3‐Br, Xanthate2‐Br2, or Xanthate‐Br3, respectively. The miktoarm star‐block copolymers containing polystyrene (PS) and poly(vinyl acetate) (PVAc) chains, PSnb‐PVAc4‐n (n = 1, 2, and 3), with controlled structures were successfully prepared by successive RAFT and ATRP chain‐extension experiments using VAc and St as the second monomers, respectively. The architecture of the miktoarm star‐block copolymers PSnb‐PVAc4‐n (n = 1, 2, and 3) were characterized by gel permeation chromatography and 1H NMR spectra. Furthermore, the results of the cleavage of PS3b‐PVAc and PVAc2b‐PS2 confirmed the structures of the obtained miktoarm star‐block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
A well‐defined amphiphilic coil‐rod block copolymer, poly(2‐vinyl pyridine)‐b‐poly(n‐hexyl isocyanate) (P2VP‐b‐PHIC), was synthesized with quantitative yields by anionic polymerization. A low reactive one‐directional initiator, potassium diphenyl methane (DPM‐K), was very effective in polymerizing 2‐vinyl pyridine (2VP) without side reactions, leading to perfect control over molecular weight and molecular weight distribution over a broad range of initiator and monomer concentration. Copolymerization of 2VP with n‐hexyl isocyanate (HIC) was carried out in the presence of sodium tetraphenyl borate (NaBPh4) to prevent backbiting reactions during isocyanate polymerization. Terminating the living end with a suitable end‐capping agent resulted in a P2VP‐b‐PHIC coil‐rod block copolymer with controlled molecular weight and narrow molecular weight distribution. Cast film from a chloroform solution of P2VP‐b‐PHIC displayed microphase separation, characteristic of coil‐rod block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 607–615, 2005  相似文献   

19.
An amphiphilic multiblock copolymer [poly(ethylene oxide)‐b‐polystyrene]n [(PEO‐b‐PS)n] is synthesized by using trithiocarbonate‐embedded PEO as macro‐RAFT agent. PEO with four inserted trithiocarbonate (Mn = 9200 and Mw/Mn = 1.62) groups is prepared first by condensation of α, ω‐dihydroxyl poly(ethylene oxide) with S, S′‐Bis(α, α′‐dimethyl‐α″‐acetic acid)‐trithiocarbonate (BDATC) in the presence of pyridine, then a series of goal copolymers with different St units (varied from 25 to 218 per segment) are obtained by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The synthesis process is monitored by size exclusion chromatography (SEC), 1H NMR and FT‐IR. The self‐assembled morphologies of the copolymers are strongly dependent of the length of PS block chains when the chain length of PEO is fixed, some new morphologies as large leaf‐like aggregates (LLAs), large octopus‐like aggregates (LOAs), and coarse‐grain like micelles (CGMs) are observed besides some familiar aggregates as large compound vesicles (LCVs), lamellae and rods, and the effect of water content on the morphologies is also discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6071–6082, 2006  相似文献   

20.
Triblock copolymers (MPEG‐b‐PCEMA‐b‐PHQHEMA) bearing cinnamoyl and 8‐hydroxyquinoline side groups with different block length are synthesized by a two‐step reversible addition fragmentation chain transfer polymerization of cinnamoyl ethyl methacrylate (CEMA) and 2‐((8‐hydroxyquinolin‐5‐yl)methoxy)ethyl methacrylate (HQHEMA), respectively. The self‐assembly of MPEG‐b‐PCEMA‐b‐PHQHEMA in mixture of THF and ethanol is investigated by varying the ratio of THF and ethanol. Spheric micelles with diameter of 63.7 nm and polydispersity of 0.128 are obtained for MPEG113b‐PCEMA15b‐PHQHEMA17 in THF/ethanol with a volume ratio (v/v) of 5/5. The PCEMA inner shell of the resulted micelles is photo‐crosslinked under UV radiation to give stabilized micelles. The complex reaction of the stabilized micelles with Zn(II) is investigated under different conditions to give zinc(II)‐bis(8‐hydroxyquinoline)(Znq2)‐containing micelles. When the complex reaction is carried out in THF/ethanol (v/v = 5/5) or THF/toluene (v/v = 6/4) with zinc acetate, fluorescent Znq2‐containing micelles are obtained without obvious change in diameters and morphologies. The fluorescent micelles exhibit green emission with λmax at 520 nm. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1056–1064  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号