首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Anionic ring‐opening polymerization of glycidyl phthalimide, initiated with alcohol–phosphazene base systems and based on monomer activation with a Lewis acid (iBu3Al), has been studied. No propagation occurred for initiator: iBu3Al ratios less or equal to 1:3. For larger Lewis acid amounts, the first anionic ring‐opening polymerizations of glycidyl phthalimide were observed. Polymers were carefully characterized by NMR, MALDI‐TOF mass spectrometry, and size exclusion chromatography and particular attention was given to the detection of eventual transfer or side‐reactions. However, polymer precipitation and transfer reaction to aluminum derivative were detrimental to monomer conversion, polymerization control, and limited polymer chain molar masses. The influence of reaction temperature and solvent on polymer precipitation and transfer reactions was studied and reaction conditions have been optimized leading to afford end‐capped poly(glycidyl phthalimide) with narrow molar mass distributions. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1091–1099  相似文献   

2.
We report the synthesis and characterization of well‐defined homo‐ and diblock copolymers containing poly(furfuryl glycidyl ether) (PFGE) via living anionic ring‐opening polymerization using different initiators. The obtained materials were characterized by SEC, MALDI‐TOF MS, and 1H NMR spectroscopy and molar masses of up to 9400 g/mol were obtained for PFGE homopolymers. If the amphiphilic diblock copolymer PEG‐block‐PFGE was dissolved in water, micelles with a PFGE core and a PEG corona were formed. Hereby, the hydrophobic PFGE core domains were used for the incorporation of a suitable bismaleimide and heating to 60 °C induced the crosslinking of the micellar core via Diels‐Alder chemistry. This process was further shown to be reversible. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Using three different catalysts, water‐initiated polymerizations of ε‐caprolactone were conducted in bulk with variation of the monomer/water ratio. The resulting CH2OH and CO2H‐ terminated polylactones were subjected in situ to azeotropic polycondensations. With Bi‐triflate and temperatures, the polycondensations were not much successful and involved side reactions. With ZnCl2, and especially SnCl2, considerably higher molar masses were achieved. The substitution of toluene for chlorobenzene for refluxing gave better results. The polycondensations broadened the molar mass distribution of the ROP‐based prepolymers, and polydispersities between 1.4–1.8 were obtained. The MALDI–TOF mass spectra revealed that the polycondensations significantly enhanced the fraction of rings due to efficient “end‐biting” reactions. By comparison with copolymerization experiments and Sn methoxide‐initiated polymerizations, it was demonstrated that equilibration reactions, such as the formation of rings by “back‐biting,” did not occur. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Four sorts of epoxy resins containing degradable acetal linkages were synthesized by the reaction of bisphenol A (BA) or cresol novolak (CN) resin with vinyl ethers containing a glycidyl group [4‐vinlyoxybutyl glycidyl ether (VBGE) and cyclohexane dimethanol vinyl glycidyl ether (CHDMVG)] and cured with known typical amine‐curing agents. The thermal and mechanical properties of the cured resins were investigated. Among the four cured epoxy resins, the CN‐CHDMVG resin (derived from CN and CHDMVE) exhibited relatively high glass transition temperature (Tg = ca. 110 °C). The treatment of these cured epoxy resins with aqueous HCl in tetrahydrofuran (THF) at room temperature for 12 h generated BA and CN as degradation main products in high yield. Carbon fiber‐reinforced plastics (CFRPs) were prepared by heating the laminated prepreg sheets with BA‐CHDMVG (derived from BA and CHDMVE) and CN‐CHDMVG, in which strands of carbon fibers are impregnated with the epoxy resins containing conventional curing agents and curing accelerators. The obtained CFRPs showed good appearance and underwent smooth breakdown with the aqueous acid treatment in THF at room temperature for 24 h to produce strands of carbon fiber without damaging their surface conditions and tensile strength. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Hyperbranched poly(ester amine) (HPEA) with terminal secondary amine groups was synthesized by the Michael addition reaction between piperazine and trimethylolpropanetriacrylate with a molar ratio of 13:6. It was further reacted with a series of aliphatic acid chlorides, including stearoyl chloride, dodecanoyl chloride, and octanoyl chloride, to yield three modified amphiphilic hyperbranched polymers, which were termed HPEA‐C18, HPEA‐C12, and HPEA‐C8, respectively. These polymers were characterized with Fourier transform infrared, 1H NMR, gel permeation chromatography, and differential scanning calorimetry measurements. Because of the existence of interior tertiary amine groups, the modified amphiphilic polymers were used as host molecules to extract the guest acid dye, methyl orange (MO), from the aqueous layer to the organic layer on the basis of the acid–base interaction. The influences of the pH of the aqueous layer and the length of the alkyl chains in the modified polymers on the phase‐transfer performances were investigated. The results indicated that more MO molecules could be extracted at a lower pH because of the formation of more quaternary ammonium ions within the host molecules. As the length of the alkyl chains in the modified polymers increased, both the transfer capability and the intermolecular aggregation at the interface were enhanced. The extracted MO could be reversibly released from the organic layer to the aqueous layer under basic conditions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2921–2930, 2005  相似文献   

6.
The synthesis of C3‐ and C2‐symmetric benzene‐1,3,5‐tricarboxamides (BTAs) containing well‐defined oligodimethylsiloxane (oDMS) and/or alkyl side chains has been carried out. The influence of the bulkiness of the oDMS chains in the aggregation behavior of dilute solutions of the oDMS‐BTAs in methylcyclohexane was studied by temperature‐dependent UV spectroscopy. The formation of hierarchically self‐assembled aggregates was observed at different BTA concentrations, the tendency of aggregation increases by shortening or removing oDMS chains. Chiral BTAs were investigated with circular dichroism (CD) spectroscopy, showing a stronger tendency to aggregate than the achiral ones. Majority rules experiments show a linear behavior consistent with the existence of a high mismatch penalty energy. The most efficient oDMS‐BTAs organogelators have the ability to form stable organogels at 5 mg mL?1 (0.75 wt %) in hexane. Solid‐state characterization techniques indicate the formation of an intermolecular threefold hydrogen bonding between adjacent molecules forming thermotropic liquid crystals, exhibiting a hexagonal columnar organization from room temperature to above 150 °C. A decrease of the clearing temperatures was observed when increasing the number and length of the oligodimethylsiloxane chains. In addition to the three‐fold hydrogen bonding that leads to columnar liquid crystalline phase, segregation between the oDMS and aliphatic chains takes place in the BTA functionalized with two alkyl and one oDMS chain leading to a superlattice within the hexagonal structure with potential applications in lithography.  相似文献   

7.
A well‐defined triblock terpolymer, poly(ethylene glycol)‐block‐poly(allyl glycidyl ether)‐block‐poly(tert‐butyl glycidyl ether) (PEG‐b‐PAGE‐b‐Pt‐BGE), with a narrow molar mass distribution has been synthesized by sequential living anionic ring‐opening polymerization. Afterward, the PAGE block was modified via thiol‐ene chemistry and different sugar moieties or cysteine as a model compound for peptides could be covalently attached to the polymer backbone. The solution self‐assembly of the obtained bis‐hydrophilic triblock terpolymers in aqueous media has been studied in detail by turbidimetry, dynamic light scattering, and transmission electron microscopy (TEM and cryo‐TEM). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Polymer‐supported pyridinium salts, prepared by quaternarization of crosslinked poly(4‐vinylpyridine) with alkyl halides, effectively catalyze the reaction of carbon dioxide (1 atm) and glycidyl phenyl ether (GPE) to afford the corresponding five‐membered cyclic carbonate (4‐phenoxymethyl‐1,3‐dioxolan‐2‐one). Poly(4‐vinylpyridine) quarternarized with alkyl bromides show high catalytic activities, and the reaction of carbon dioxide (1 atm) and GPE at 100 °C affords 4‐phenoxymethyl‐1,3‐dioxolan‐2‐one quantitatively in 6 h. The rate constant in the reaction of GPE and carbon dioxide in N‐methyl pyrrolidinone using poly(4‐vinylpyridine) quarternarized with n‐butyl bromide (kobs = 102 min?1) is almost comparable with those for homogeneous catalysts with good activities (e.g., LiI), and the rate of the reaction obeys the first‐order kinetics. A used catalyst may be recovered by centrifugation, and the recycled catalyst also promotes the reaction of GPE and carbon dioxide. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5673–5678, 2007  相似文献   

9.
High molecular weight, soluble, amorphous, partially aliphatic polyimides were successfully synthesized using an ester acid high‐temperature solution imidization route, which allows one to control desired glass‐transition (Tg) and processing temperatures. This method involves the prereaction of aromatic dianhydrides with ethanol and a tertiary amine catalyst to form ester acids, followed by the addition of diamines. Subsequent thermal reaction forms fully cyclized polyimides. This reaction pathway eliminates the need for anhydrous solvents and overcomes the problem of salt formation commonly observed for nucleophilic, more‐basic aliphatic amines when utilizing the traditional polyamic acid synthesis route. The molar ratio of aromatic‐to‐aliphatic diamines was varied to generate a series of copolyimides with the chosen dianhydride and tailor the physical properties for specific adhesive applications. This series of copolyimides was characterized by their molecular weight, Tg, thermal stability, coefficient of thermal expansion, refractive index, and dielectric constant. Structure‐property relationships were established. The γ and β sub‐Tg viscoelastic properties were researched to understand their molecular origins. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1503–1512, 2002  相似文献   

10.
A novel, straightforward and versatile chemical pathway has been studied to functionalize water‐soluble chitosan oligomers. This metal‐free methodology is based on the epoxy‐amine reaction of the allyl glycidyl ether with chitosan, followed by thiol‐ene radical coupling reaction of ω‐functional mercaptans, using 4,4′‐Azobis(4‐cyanovaleric acid) as a free radical initiator. Both reactions were entirely carried out in water. In a preliminary step, chitosan depolymerization was carried out using H2O2 in an acetic medium under 100 W microwave irradiation, optimizing the yield of water‐soluble oligomers. Functionalization by six different thiols bearing alcohol, carboxylic acid, ester, and amino groups was then performed, leading to a range of functional oligochitosans with different grafting efficiencies. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 39–48  相似文献   

11.
In the presence of excess NaOH, reaction of Cu(OAc)2·H2O with equimolar ammonium calix[4]arene [H4L]I4 ( 1 , H4L = [5,11,17,23‐tetrakis(trimethylammonium)‐25,26,27,28‐tetrahydroxycalix[4]arene]) resulted in the formation of a mononuclear cationic Cu(II) complex [Cu(II)L(H2O)]I2 ( 2 ) in 43% yield. Complex 2 was characterized by elemental analysis, infrared (IR), and single crystal X‐ray diffraction. The Cu(II) atom in 2 is coordinated by four oxygen atoms of one L4? ligand and one O atom from one water molecule, forming a square pyramidal geometry. Complex 2 exhibited high catalytic activity in the oxidative polymerization of 2,6‐dimethylphenol using O2 as oxidizing agent in water under mild conditions. The selective polymerization produced poly(2,6‐dimethyl‐1,4‐phenylene oxide) in high yields with almost no diphenoquinone. The influence of the polymerization temperature, the time interval, the molar ratio of 2,6‐dimethylphenol/ 2 , the concentrations of sodium hydroxide, and sodium n‐dodecyl sulfate were examined. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
This article describes the synthesis of and catalysis with a polymeric catalyst (Zn/ 1NHCOO ) carrying salen‐zinc complex structure in the main chain prepared from polyaddition of zinc/bis(4‐hydroxy)salicylidene‐1,2‐diiminoethane and 4,4′‐diphenylmethane diisocyanate. Poly(Zn/ 1NHCOO ) promoted the reaction of glycidyl phenyl ether (2) with 1‐propoxyethyl‐2‐ethylhexanoate (3) only at moderately elevated temperatures. Poly(Zn/ 1NHCOO ) can be recycled by simple filtration from the reaction mixtures, and the recycled polymer is as active as the freshly prepared one. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3673–3681, 2008  相似文献   

13.
Poly(allyl glycidyl ether) and poly(allyl glycidyl ether‐co‐epichlorohydrin) were prepared by monomer‐activated anionic polymerization. Quantitative and controlled polymerization of allyl glycidyl ether (AGE) giving high molar mass polyether was achieved in a few hours at room temperature in toluene using tetraoctylammonium salt as initiator in presence of an excess of triisobutylaluminum ([i‐Bu3Al]/[NOct4Br] = 2?4). Following the same polymerization route, the copolymerization of AGE and epichlorohydrin yields in a living‐like manner gradient‐type copolymers with controlled molar masses. Chemical modification of the pendant allyl group into cyclic carbonate was then investigated and the corresponding polymers were used as precursors for the isocyanate‐free synthesis of polyurethane networks in presence of a diamine. Formation of crosslinked materials was followed and characterized by infrared and differential scanning calorimetry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
The grafting reaction of poly(1,3‐cyclohexadienyl)lithium onto fullerene‐C60 (C60) was strongly affected by the nucleophilicity of poly(1,3‐cyclohexadiene) (PCHD) carbanions and the polymer chain microstructure, and progressed via step‐by‐step reactions. A star‐shaped PCHD, having a maximum of four arms, was obtained from poly(1,3‐cyclohexadienyl)lithium composed of all 1,4‐cyclohexadiene (1,4‐CHD) units. The rate of the grafting reaction was accelerated by the addition of amine. The grafting density of PCHD arms onto C60 decreased with an increase in the molar ratio of 1,2‐cyclohexadiene (1,2‐CHD) units. The electron‐transfer reaction from PCHD carbanions to C60 did not occur in either a nonpolar solvent or a polar solvent. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3282–3293, 2008.  相似文献   

15.
The reaction enthalpy and reaction heat capacity of three aromatic epoxy–amine systems have been determined with modulated temperature diffential scanning calorimetry (MTDSC), mostly in quasi‐isothermal conditions, over a wide temperature range (33–140 °C) and for different mixture compositions. The reaction enthalpy is only slightly dependent on the epoxy–amine chemistry, from ?111 to ?98 kJ/mol epoxy functionality. With the model system phenyl glycidyl ether (PGE)+aniline, the reaction enthalpy of the secondary amine–epoxy reaction step is equal to that of the primary amine–epoxy reaction. Group contributions needed to calculate the reaction heat capacity with an additivity approach are evaluated, and a new value of 37.2 J mol?1 K?1 for the group N? (H)(C)(CB) is proposed. With this group contribution, the additivity method predicts almost equal values for the reaction heat capacity of both amine–epoxy reaction steps at 298.15 K (ΔrCp,prim = 15.7 J mol?1 K?1 and ΔrCp,sec = 14.6 J mol?1 K?1), whereas the experimental value of ΔrCp,sec is about three times larger than that of ΔrCp,prim at 100 °C. These results are confirmed experimentally for PGE+aniline as a different temperature dependence of both reaction heat capacities. MTDSC therefore is potentially interesting for differentiating between reactive species in an epoxy–amine reaction, a benefit previously assigned to spectroscopic methods only. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 594–608, 2003  相似文献   

16.
Six silicate‐crosslinked oligodimethylsiloxane thin films were prepared by the phosphoric acid (1 mol %) catalyzed condensation of α,ω‐bis(hydroxy)oligodimethylsiloxane (P) and tetrakis(hydroxydimethylsiloxy)silane (Q). Other acid catalysts were evaluated. P and Q were prepared by the Pd‐catalyzed oxidation of the corresponding Si? H compounds with water. The starting materials were characterized by IR and 1H, 13C, and 29Si NMR. A thermal cure was achieved with H3PO4 in 24 h and with poly(phosphoric acid) in 3 h at 110–120 °C. Dynamic mechanical analysis was used to determine the glass‐transition temperatures and to evaluate the mechanical properties of the films. Their thermal stabilities (≥300 °C) in air and N2 were determined by thermogravimetric analysis. Small amounts of non‐crosslinked P were recovered from the films by Soxhlet extractions with CH2Cl2 and analyzed by IR, gel permeation chromatography, and 29Si NMR. The crosslink densities were evaluated by the CH2Cl2 absorption capacities of the films. The surface properties of the films were determined by static and dynamic contact‐angle measurements. Electrochemical impedance spectroscopy was carried out to evaluate the corrosion‐protective properties of the coatings on mild steel as a function of the exposure time to 0.5 N NaCl. The biofoul‐release properties of the films were evaluated with sporelings from mature Ulva linza plants and barnacles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2237–2247, 2006  相似文献   

17.
Aliphatic polyurethanes could be obtained in high yield via a non‐isocyanate method based on the self‐polycondensation of dihydroxyurethanes obtained by the reaction of diamines and ethylene carbonate. The polycondensation under a N2 atmosphere yielded [6,2]polyurethane with a Mn value of 5300 in 87% yield. Two‐step polycondensation, consisting of the polycondensation under a N2 atmosphere followed by that under reduced pressure, was effective to improve the yield and the molecular weight up to 90% and 10,000, respectively. Although the second polycondensation step at 180 °C was accompanied by formation of urea groups, this side reaction was relatively suppressed at 150 °C. The resulting polyurethane having hydroxyl groups at both of the end groups was converted to polyurethane methacrylate via a reaction with glycidyl methacrylate, and the polyurethane methacrylate served as a crosslinker for radical polymerization of methyl acrylate. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
Among the numerous reduced bandgap polymers currently being developed, poly[3‐(4‐octylphenyl)thiophene)]s (POPT) may present attractive properties for organic solar cells due to its facile preparation and improved absorption with respect to poly(3‐hexylthiophene). This article appraises methods of preparation, including the use of diphenyl ether as a reaction medium, and discusses the effects of variations in molar masses, from about 3200 to 65,000 g mol?1 and regioregularity on its optoelectronic properties. The photovoltaic properties of POPT with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) in bulk heterojunction devices are also discussed in the light of morphological variations, as indicated by atomic force microscopy characterizations. With an initial screening of conditions, namely POPT:PCBM ratios and deposition solvent, a power conversion efficiency of 1.58% was obtained using a relatively high molar mass POPT sample. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Hyperbranched polyaspartimides were successfully prepared from bismaleimides (A2) and triamines (B3) through the Michael addition reaction. Two bismaleimides of 4,4′‐bismaleimidodiphenylmethane (BMDM) and bis(3‐ethyl‐5‐methyl‐4‐ maleimidophenyl)methane (BEMM) and two triamines of tris(3‐aminophenyl)phosphine oxide (TAPPO) and tris(4‐aminophenyl)amine (TAPA) were employed in the preparation of these hyperbranched polyaspartimides. The chemical structures of the polymers were characterized with Fourier transform infrared (FTIR), 1H and 31P NMR, and elemental analysis. Degrees of branching ranging from 0.51 to 0.69 were found with the polyaspartimides, ensuring their hyperbranched structure. The polymers also showed good solubility in common solvents, high glass‐transition temperatures of 256 °C, and excellent thermal stability above 370 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5921–5928, 2004  相似文献   

20.
Lanthanum isopropoxide (La(OiPr)3) has been synthesized and employed for ring‐opening polymerization of 1,4‐dioxan‐2‐one in bulk as a single‐component initiator. The influences of reaction conditions such as initiator concentration, reaction time, and reaction temperature on the polymerization were investigated. The kinetics indicated that the polymerization is first‐order with respect to the monomer concentration. The Mechanistic investigations according to 1H NMR spectrum analysis demonstrated that the polymerization of PDO proceeded through a coordination‐insertion mechanism with a rupture of the acyl‐oxygen bond of the monomer rather than the alkyl‐oxygen bond cleavage. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5214–5222, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号