首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A durable superhydrophobic surface with low water sliding angle (SA) and high water contact angle (CA) was obtained by electrospinning poly (vinylidene fluoride) (PVDF) which was mixed with epoxy-siloxane modified SiO(2) nanoparticles. To increase the roughness, modified SiO(2) nanoparticles were introduced into PVDF precursor solution. Then in the electrospinning process, nano-sized SiO(2) particles irregularly inlayed (it could also be regard as self-assembly) in the surface of the micro-sized PVDF mini-islands so as to form a dual-scale structure. This structure was responsible for the superhydrophobicity and self-cleaning property. In addition, epoxy-siloxane copolymer was used to modify the surface of SiO(2) nanoparticles so that the SiO(2) nanoparticles could stick to the surface of the micro-sized PVDF mini-islands. Through the underwater immersion test, the SiO(2) nanoparticles cannot be separated from PVDF easily so as to achieve the effect of durability. We chiefly explore the surface wettability and the relationship between the mass ratio of modified SiO(2) nanoparticles/PVDF and the CA, SA of electrospun mat. As the content of modified SiO(2) nanoparticles increased, the value of CA increased, ranging from 145.6° to 161.2°, and the water SA decreased to 2.17°, apparently indicating that the membrane we fabricated has a perfect effect of superhydrophobicity.  相似文献   

2.
Amphiphilic comb-like polysiloxane (ACPS) containing polyether side chains was used as the modification reagent in the preparation of hydrophilic porous poly (vinylidene fluoride) (PVDF) membranes via a phase inversion process. The effects of ACPS on morphology, crystallinity, mechanical properties, reservation of ACPS in the phase inversion process, chemical structure, hydrophilicity and filterability performance of porous PVDF membranes were discussed. It was found that the addition of ACPS would result in the delayed demixing which yields “sponge-like” sublayers and longer crystallization time during the membrane formation process. It was revealed that O/F ratios of the bulk membrane were almost the same as those of the corresponding casting solutions which obviously indicated the high reservation of ACPS in the membrane formation process. The fact that the O/F ratios in the membrane surface layers were much higher than those in the bulk membrane proved the enrichment of ACPS on the surface. The filterability experiments and water contact angle testing proved the hydrophilicity of the blend membranes. Through a schematic model, the mechanism relating the membrane structure and performance was interpreted. From the observed results, it can be concluded that ACPS acts as a potential candidate material for preparing PVDF membranes with extraordinary hydrophilicity and filterability. __________ Translated from Acta Polymerica Sinica, 2007, 12: 1168–1175  相似文献   

3.
A simple technique was developed for the fabrication of a superhydrophobic surface on the aluminum alloy sheets. Different hierarchical structures(Ag, Co, Ni and Zn) were formed on the aluminum surface by the galvanic replacement reactions. After the chemical modification of them with fluorination, the wettability of the surfaces was changed from superhydrophilicity to superhydrophobicity. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and water contact angle measurement were performed to characterize the morphological characteristic, chemical composition and superhydrophobicity of the surfaces. The as-prepared superhydrophobic surfaces showed a water contact angle as high as ca.160° and sliding angle as low as ca.3°. We hope the method to produce superhydrophobic surface can be used in many fields.  相似文献   

4.
In order to improve the antifouling performance of PVDF membrane, a novel zinc sulfide/graphene oxide/polyvinylidene fluoride (ZnS/GO/PVDF) composite membrane was prepared by immersed phase inversion method. The surface morphology, crystal structure, photocatalytic activity, and antifouling property of the as‐prepared membranes were systematically studied. Results showed that the ZnS/GO/PVDF hybrid membranes were successfully fabricated with uniform surface. The hybrid membrane surface possessed higher hydrophilicity with water contact angle decreasing from 77.1° to 62.2°. The permeability of the hybrid membrane was therefore enhanced from 222.9 to 326.1 L/(m2 hour). Moreover, bovine serum albumin (BSA) retention experiment showed that the hybrid membrane separation was also promoted by 7.2%. The blending of ZnS and GO enhanced the hydrophilic and photocatalytic performances of PVDF membrane, which mitigated the membrane fouling effectively. This novel hybrid membrane could accelerate the practical application of photocatalytic technology in membrane separation process.  相似文献   

5.
A silver nanoparticles-poly(carboxybetaine methacrylate)(AgNPs-PCBMA) nanocomposite was prepared on poly(vinylidene fluoride)(PVDF) membrane surface to improve its hydrophilicity and antifouling properties. Firstly, the PVDF membranes were grafted by PCBMA via physisorbed free radical grafting technique. Then Ag+ coordinated to the carbonyl group on PCBMA andsubsequently was reduced to silver nanoparticles. The hydrophilicity of the PVDF-gPCBMA/Ag membrane wasenhanced with the increasing fixed degree(FD) of AgNPs, and the original water contact angle of membrane was reduced to 33.97°. Additionally, water flux recovery ratio(FRR) andbovine serum albumin(BSA) rejection ratio of PVDF-g-PCBMA/AgNPs membrane wereimproved from 52% to 93.32% and 28.12% to 91.12%, respectively. Further, the PVDF-g-PCBMA/AgNPs membranes exhibited the more pronounced inhibition zone. The study demonstrated that compared with pure AgNPs or the PCBMA polymer brush, the synergistic effect of PCBMA and AgNPs made PVDF membranes havebetter hydrophilicity and anti-bacterialperformances.  相似文献   

6.
《先进技术聚合物》2018,29(1):254-262
Membrane technology has been successfully applied for the removal of dyes from wastewater in the textile industry. A novel poly(vinylidene fluoride) (PVDF) membrane was prepared via blending with different dosages of Ag‐TiO2‐APTES composite for dyeing waste water treatment in our study. And the effect of Ag‐TiO2‐APTES blended into the PVDF membrane was discussed, including the rejection rate of methylene blue (MB) dye, membrane morphology, surface hydrophilicity, antibacterial activity, and a certain photocatalytic self‐cleaning performance. X‐ray diffraction and Fourier transform infrared characterization confirmed that Ag‐TiO2 was functionalized by amount of hydroxyl group (−OH) and amino group (NH−), which provided by APTES. Contact angle measurement certified that the hydrophilicity of the membrane surface increased, with the contact angle decrease to 61.4° compared with 81.8° of original PVDF membrane. MB rejection rate was also increased to 90.1% after addition of Ag‐TiO2‐APTES, and the rejection of original membrane was only 74.3%. The morphologies of membranes were observed by scanning electron microscope, which indicated that Ag‐TiO2‐APTES had a good dispersion in membrane matrix and also improved the microstructure of membranes. Besides, UV irradiation experiments were performed on the composite films contaminated by MB, and the result showed that Ag‐TiO2‐APTES nanoparticle provided PVDF membrane with a certain photodegradation capacity under UV irradiation. Moreover, antibacterial activity of the composite membrane was also demonstrated through antibacterial experiment, Escherichia coli as the representative bacteria. Perhaps, this research may provide a new way for PVDF blending modification.  相似文献   

7.
Using the mixture of triethyl phosphate (TEP) and N,N‐dimethylacetamide (DMAc) as solvent, PVDF microporous membranes with highly hydrophobic surface were prepared by a modified NIPS method with a dual coagulation process. The effects of the exposure time on these membranes before being immersed into the coagulation bath and the composition in the coagulation bath on precipitation rate, membrane morphology, membrane hydrophobicity, membrane mechanical property, and membrane performance were studied. The morphologies and hydrophobicities of PVDF microporous membranes were investigated by scanning electron microscopy (SEM) and contact angle (CA) measurement. The precipitation processes were observed by light transmittance measurement. The pore size distribution was determined by liquid permeation technique. PVDF microporous membrane obtained by passing evaporation period of 60 min before being immersed into the water bath showed a high water CA of 122.1°. Using ethanol (EtOH) as coagulation bath, the water CAs of the top surface and bottom surface of the membrane increased to 125.9 and 132.6°, respectively. To further improve PVDF membrane hydrophobicity, a dual coagulation process was used and the mixed solvent (TEP–DMAc) was added into the first coagulation bath for 30 sec. Increase in the TEP–DMAc content led to the change in the morphology type of the membrane, that is, from an asymmetric structure with a dense top surface to a symmetric structure with a skinless top surface, and the pore size distribution widened greatly. By increasing the mass ratio of TEP to DMAc, the denseness of the membrane surface decreased significantly. Adding 60 wt% of TEP–DMAc to the first coagulation bath and the mass ratio of TEP to DMAc was 60:40, the CA reached to a maximum as high as 136.6°, and PVDF microporous membrane showed a high porosity of 80% and an excellent mechanical property of 3.14 MPa tensile strength and 61.79% elongation ratio. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A facial chemical etching method was developed for fabricating superhydrophobic aluminum surfaces. The resultant surfaces were characterized by scanning electron microscopy, water contact angle (WCA) measurement, and optical methods. The surfaces of the modified aluminum substrates exhibit superhydrophobicity, with a WCA of 154.8° ± 1.6° and a water sliding angle of about 5°. The etched surfaces have binary structure consisting of the irregular microscale plateaus and caves in which there are the nanoscale block‐like convexes and hollows. The superhydrophobicity of aluminum substrates occurs only in some structures in which the plateaus and caves are appropriately ordered. The resulted surfaces have good self‐cleaning properties. The results demonstrate that it is possible to construct superhydrophobic surface on hydrophilic substrates by tailoring the surface structure to providing more spaces to trap air. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Obtaining superhydrophobic surfaces for their application in electronics and flexible wearable devices remains a significant challenge. Most previously reported methods for obtaining superhydrophobic surfaces involve complex and expensive preparation techniques and thus cannot be used for practical applications. Ion-beam irradiation is a simple and promising method for fabricating superhydrophobic nanostructures on large areas at a low cost. Ion-beam irradiation using argon and oxygen gases was used to prepare silica nanorod structures on glass substrates. This study is not just a modification of the surface of nanoparticles, but a change in nanoparticle shape. The nanorods were subsequently treated with perfluorooctyltriethoxysilane to obtain superhydrophobicity. The surface of the silica nanorods exhibited a static water contact angle of 153°, indicating superhydrophobicity. The combination of rough structures of silica nanorods and low surface energy resulted in superhydrophobicity. The surface properties were evaluated in detail using Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy. The proposed method is facile, inexpensive, and can be used for the large-scale production of nanorod structures for potential industrial applications.  相似文献   

10.
The wetting property of a superhydrophobic glass surface with a micro-network of nanopillars fabricated from colloidal lithography and plasma etching is investigated in this paper. The micro-network distribution of nanospheres can be modulated by diluting the nanosphere concentration and controlling the spin rate. The micro-network of nanospheres spun on the glass surface serves as a mask for nanopillars during the plasma etching process. After the fabrication, the nano-structured surface is treated with fluoroalkylsilane self-assembled monolayers to obtain superhydrophobicity. Among several spin rates, the minimum colloidal network area density from a 100 nm polystyrene nanosphere solution diluted to 0.026% was found at a spin rate of 4000 rpm. The sample with the lowest network area density shows a good quality of superhydrophobicity, having the highest water contact angle and the lowest sliding angle among samples with other network area densities. In particular, samples with a micro-network of pillars also showed mechanical robustness against finger rubbing. To assess the superhydrophobic behavior in-depth, a size-dependent contact angle equation is proposed for use with a high contact angle (>135°) and with a Bo (Bond number) ? 1. Furmidge's sliding angle equation is also modified; it is derived considering a static contact angle to simplify the prediction of the sliding angle. The contact and sliding angle measurements from samples with a micro-network of nanopillars show good agreement with the proposed equations.  相似文献   

11.
To endow hydrophobic poly(vinylidene fluoride) (PVDF) membranes with reliable hydrophilicity and protein resistance, an amphiphilic hyperbranched-star polymer (HPE-g-MPEG) with about 12 hydrophilic arms in each molecule was synthesized by grafting methoxy poly(ethylene glycol) (MPEG) to the hyperbranched polyester (HPE) molecule using terephthaloyl chloride (TPC) as the coupling agent and blended with PVDF to fabricate porous membranes via phase inversion process. The chemical composition changes of the membrane surface were confirmed by X-ray photoelectron spectroscopy (XPS), and the membrane morphologies were measured by scanning electron microscopy (SEM). Water contact angle, static protein adsorption, and filtration experiments were used to evaluate the hydrophilicity and anti-fouling properties of the membranes. It was found that MPEG segments of HPE-g-MPEG enriched at the membrane surface substantially, while the water contact angle decreased as low as 49 degrees for the membrane with a HPE-g-MPEG/PVDF ratio of 3/10. More importantly, the water contact angle of the blend membrane changed little after being leached continuously in water at 60 degrees C for 30 days, indicating a quite stable presence of HPE-g-MPEG in the blend membranes. Furthermore, the blend membranes showed lower static protein adsorption, higher water and protein solution fluxes, and better water flux recovery after cleaning than the pure PVDF membrane.  相似文献   

12.
A novel hydrophilic nanocomposite additive(TiO2-g-PNIPAAm) was synthesized by the surface modification of titanium dioxide(TiO2) with N-isopropylacrylamide(NIPAAm) via "graft-from" technique. And the nanocomposite membrane of poly(vinylidene fluoride)(PVDF)/TiO2-g-PNIPAAm was fabricated by wet phase inversion. The graft degree was obtained by thermo-gravimetric analysis(TGA). Fourier transform infrared attenuated reflection spectroscopy(FTIR-ATR) and X-ray photoelectronic spectroscopy(XPS) characterization results suggested that TiO2-g-PNIPAAm nanoparticles segregated on membrane surface during the phase separation process. Scanning electron microscopy(SEM) was conducted to investigate the surface and cross-section of the modified membranes. The water contact angle measurements confirmed that TiO2-g-PNIPAAm nanoparticles endowed PVDF membranes better hydrophlilicity and thermo-responsive properties compared with those of the pristine PVDF membrane. The water contact angle decreased from 92.8° of the PVDF membrane to 61.2° of the nanocompostie membrane. Bovine serum albumin(BSA) static and dynamic adsorption experiments suggested that excellent antifouling properties of membranes was acquired after adding TiO2-gPNIPAAm. The maximum BSA adsorption at 40 °C was about 3 times than that at 23 °C. The permeation experiments indicated the water flux recover ratio and BSA rejection ratio were improved at different temperatures.  相似文献   

13.
《Comptes Rendus Chimie》2019,22(5):369-372
Pore wetting is undesirable in the membrane gas–liquid separation process as it deteriorates the gas removal flux. To alleviate the affinity of a membrane surface toward a liquid solvent, its hydrophobicity needs to be enhanced. In this study, a superhydrophobic polyvinylidene fluoride-co-hexafluoropropylene membrane was synthesized via a simple and facile nonsolvent-induced phase inversion process. Hydrophobic nano-SiO2 particles were used as solvent additives to improve the wetting resistance of the membrane. The results revealed that blended nano-SiO2 membranes exhibited enhanced surface hydrophobicity in terms of water contact angle. Such improvement was attributed to the enhancement of surface roughness via the formation of hierarchical multilevel protrusions. Besides, the embedment of nanoparticles in polymer spherulitic globules also contributed to the reduction in surface energy of the membrane. As a result, the blended nano-SiO2 membrane achieved superhydrophobicity with a water contact angle of up to 151°.  相似文献   

14.
郑建勇  冯杰  钟明强 《高分子学报》2010,(10):1186-1192
以碳酸钙(CaCO3)颗粒层为模板,运用简单的热压和酸蚀刻相结合的方法制备聚合物超亲水/超疏水表面.首先在玻璃基底上均匀铺撒一层CaCO3颗粒,以此作为模板,通过热压线性低密度聚乙烯(LLDPE)使CaCO3颗粒均匀镶嵌在聚合物表面,获得了超亲水性质;进一步经酸蚀得到了具有微米和亚微米多孔结构的表面,其水滴静态接触角(WCA)可达(152.7±0.8)°,滚动角小于3°,具备超疏水性质.表面浸润性能和耐水压冲击性能研究表明该超疏水表面具有良好的稳定性和持久性.用同样工艺微模塑/酸蚀刻其它疏水性聚合物,得到类似结果.  相似文献   

15.
Hydrophilic poly(vinylidene fluoride) (PVDF) nanocomposite ultrafiltration (UF) membranes with excellent antifouling and antibiofouling characteristics are fabricated by employing polyhexanide coated copper oxide nanoparticles (P–CuO NPs). The presence of P–CuO NPs is played a significant role in altering the PVDF membrane matrix and probed by XRD, FTIR, FESEM and contact angle analysis. The PVDF/P–CuO nanocomposite membranes exhibited an outstanding antifouling performance indicated by the superior pure water flux, effective foulant separation and maximum flux recovery ratio during UF experiments as a result of the formation of the hydrophilic and more porous membrane due to the uniform distribution of P–CuO NPs. Particularly, the PVDF/P–CuO-3 membrane showed higher PWF of 152.5 ± 2.4 lm−2h−1 and porosity of 64.5% whereas the lower contact angle of 52.5°. Further, it showed the higher rejection of 99.5 and 98.4% and the flux recovery ratio of 99.5 and 98.5% respectively for BSA and HA foulants, demonstrated its increased water permeation, foulant separation and antifouling behavior. Further, the decent antibacterial activity is showed by the PVDF/P–CuO nanocomposite membranes with the formation of halo-zone around the membrane when exposed to the bacterial medium demonstrated that, by this process an antibacterial water treatment membrane can be developed by simple phase inversion technique with good membrane stability.  相似文献   

16.
A facile and low-cost superhydrophobic nanocomposite coating on paper surface was fabricated through one-step simply spraying dispersion, using hydrophobic silica nanoparticles as a filter (SiNPs) and polyvinylidene fluoride (PVDF) as a film-forming material. Hydrophobic SiNPs were fabricated via co-hydropholysis and condensation of TEOS and long-chain alkyl silane based on a simple sol-gel process, and the surface chemical structure of SiNPs was characterized by Fourier transform infrared (FTIR) spectra. The wettability and morphology of the coating surface were measured by contact angle (CA) measurement and scanning electron microscope, respectively. The influence of the mass ratio of hydrophobic SiNPs to PVDF (M(SiNPs:PVDF)) on the superhydrophobicity of paper surface was studied. The results showed that when M(SiNPs:PVDF) was 3:1, the water CA was 156.0 ± 1.0° for the nanocomposite coating with micro/nano-hierarchical structure on paper surface. Further, such superhydrophobic nanocomposite coatings on paper surface showed little adhesive property with water. In addition, the prepared superhydrophobic nanocomposite coating could be applied in other substrates, such as wood, aluminum sheet, stainless steel, polytetrafluoroethylene (PTFE), etc.  相似文献   

17.
《先进技术聚合物》2018,29(1):302-309
A novel superhydrophobic surface based on low‐density polyethylene (LDPE)/ethylene‐propylene‐diene terpolymer (EPDM) thermoplastic vulcanizate (TPV) was successfully fabricated where the etched aluminum foil was used as template. The etched aluminum template, consisted of countless micropores and step‐like textures, was obtained by metallographic sandpaper sanding and the subsequent acid etching. The surface morphology and the hydrophobic properties of the molded TPV surface were researched by using field emission scanning electron microscope and contact angle meter, respectively. From the microstructure observation of the superhydrophobic LDPE/EPDM TPV surface, the step‐like textures obtained via molding with etched aluminum foil template and a large number of fiber‐like structures resulted from the plastic deformation of LDPE matrix could be found obviously. The obtained TPV surface exhibited remarkable superhydrophobicity, with a contact angle of 152.0° ± 0.7° and a sliding angle of 3.1° ± 0.8°.  相似文献   

18.
徐又一 《高分子科学》2013,31(7):994-1001
A novel method for the surface modification of PVDF porous membranes was introduced. Styrene-(N-(4-hydroxyphenyl) maleimide) alternating copolymer SHMI-Br was blended with PVDF to fabricate SHMI-Br/PVDF membranes. The C-Br bond on the SHMI-Br/PVDF membrane was served as initial site of ATRP, and P(PEGMA) brush was grafted on the PVDF membrane. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR/FTIR) was used to prove the P(PEGMA) brushes were successfully grafted onto the SHMI-Br/PVDF membrane surface. Introduction of P(PEGMA) brushes on the PVDF membrane surface enhanced the hydrophilicity effectively. When the PEGMA degree of grafting was 16.7 wt%, the initial contact angle of PVDF membrane decreased from 98° to 42°. The anti-fouling ability of PVDF membrane was improved significantly after P(PEGMA) brush was grafted. Taking the PEGMA degree of grafting 16.7 wt% as an example, the flux of protein solution was about 151.21 L/(m2 h) when the pH value of the BSA solution was 4.9. As the pH value was increased to 7.4, the flux was changed to 180.06 L/(m2 h). However, the protein solution flux of membrane M3 (PEGMA: 0 wt%) was only 73.84 L/(m2 h) and 113.52 L/(m2 h) at pH 4.9 and 7.4, respectively.  相似文献   

19.
以聚醚链段为侧链的两亲性梳状聚醚硅氧烷(ACPS)为改性剂,研究了相转化法制备聚偏氟乙烯(PVDF)多孔膜的改性效果与机理.采用SEM、XPS、接触角、水通量等考察了ACPS对膜结构与性能的影响.研究发现,ACPS在相转化成膜过程中不流失,随着制膜液中ACPS含量的增加,相分离速度降低,膜中微孔由指状结构向蜂窝状结构发展,膜强度提高,亲水性显著提高.提出了ACPS在膜表面的富集现象和在膜中的稳定性机理和模型.结果表明,两亲性梳状聚醚硅氧烷在原理上是一类适合于相转化法制备聚合物微孔膜表面亲水化改性的有效物质.  相似文献   

20.
Both surface microstructure and low surface energy modification play a vital role in the preparation of superhydrophobic surfaces. In this study, a safe and simple electrochemical method was developed to fabricate superhydrophobic surfaces of Zr-based metallic glasses with high corrosion resistance. First, micro–nano composite structures were generated on the surface of Zr-based metallic glasses by electrochemical etching in NaCl solution. Next, stearic acid was used to decrease surface energy. The effects of electrochemical etching time on surface morphology and wettability were also investigated through scanning electron microscopy and contact angle measurements. Furthermore, the influence of micro–nano composite structures and roughness on the wettability of Zr-based metallic glasses was analysed on the basis of the Cassie–Baxter model. The water contact angle of the surface was 154.3° ± 2.2°, and the sliding angle was <5°, indicating good superhydrophobicity. Moreover, the potentiodynamic polarisation test and electrochemical impedance spectroscopy suggested excellent corrosion resistance performance, and the inhibition efficiency of the superhydrophobic surface reached 99.6%. Finally, the prepared superhydrophobic surface revealed excellent temperature-resistant and self-cleaning properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号