首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Plastics are increasingly being used for the fabrication of Lab-on-a-Chip devices due to the variety of beneficial material properties, affordable cost, and straightforward fabrication methods available from a range of different types of plastics. Rapid prototyping of polydimethylsiloxane (PDMS) devices has become a well-known process for the quick and easy fabrication of microfluidic devices in the research laboratory; however, PDMS is not always an appropriate material for every application. This paper describes the fabrication of thermoset polyester microfluidic devices and masters for hot embossing using replica molding techniques. Rapid prototyped PDMS molds are convienently used for the production of non-PDMS polymeric devices. The recessed features in the cast polyester can be bonded to a second polyester piece to form an enclosed microchannel. Thermoset polyester can withstand moderate amounts of pressure and elevated temperature; therefore, the cast polyester piece also can be used as a master for embossing polymethylmethacrylate (PMMA) microfluidic systems. Examples of enclosed polyester and PMMA microchannels are presented, and we discuss the electroosmotic properties of both types of channels, which are important for analytical applications such as capillary electrophoresis.  相似文献   

2.
Applications of poly(dimethylsiloxane) (PDMS)-based microfluidic systems are more popular nowadays. Previous fabrication methods of the masters for PDMS microchannels require complicated steps and/or special device. In this paper, we demonstrated that the toner printed on the transparency film with the office laser printer (1200 dpi) can be used as the positive relief of the masters. The transparency film was printed in two steps in order to obtain the same printing quality for the crossed lines. With the laser-printed master, the depth of the fabricated PDMS microchannels was ca. 10 microm and the smallest width was ca. 60 microm. Surface characteristics of the PDMS/PDMS microchannels were performed with SEM. Their electrokinetic properties were investigated by the aids of the measurement of electroosmotic flow (EOF) and the Ohm's curve. Using the PDMS/PDMS microchip CE systems, electroactive biological molecules and non-electroactive inorganic ions were well separated, respectively. This simple approach could make it easy to carry out the studies of PDMS microfluidic systems in more general labs without special devices.  相似文献   

3.
This study describes an inexpensive and nonconventional soft-embossing protocol to produce microfluidic devices in poly(methyl methacrylate) (PMMA). The desirable microfluidic structure was photo-patterned in a poly(vinyl acetate) (PVAc) film deposited on glass substrate to produce a low-relief master. Then, this template was used to generate a high-relief pattern in stiffened PDMS by increasing of curing agent /monomer ratio (1:5) followed by thermal aging in a laboratory oven (200°C for 24 h). The stiffened PDMS masters were used to replicate microfluidic devices in PMMA based on soft embossing at 220–230°C and thermal sealing at 140°C. Both embossing and sealing stages were performed by using binder clips. The proposed protocol has ensured the replication of microfluidic devices in PMMA with great fidelity (>94%). Examples of MCE devices, droplet generator devices and spot test array were successfully demonstrated. For testing MCE devices, a mixture containing inorganic cations was selected as model and the achieved analytical performance did not reveal significant difference from commercial PMMA devices. Water droplets were successfully generated in an oil phase at rate of ca. 60 droplets/min (fixing the continuous phase flow rate at 100 μL/h) with size of ca. 322 ± 6 μm. Glucose colorimetric assay was performed on spot test devices and good detectability level (5 μmol/L) was achieved. The obtained results for two artificial serum samples revealed good agreement with the certified concentrations. Based on the fabrication simplicity and great analytical performance, the proposed soft-embossing protocol may emerge as promising approach for manufacturing PMMA devices.  相似文献   

4.
High-aspect-ratio microstructures have been prepared using hot-embossing techniques in poly(methyl methacrylate) (PMMA) from Ni-based molding dies prepared using LIGA (Lithographie, Galvanoformung, Abformung). Due to the small amount of mask undercutting associated with X-ray lithography and the high energy X-ray beam used during photoresist patterning, deep structures with sharp and smooth sidewalls have been prepared. The Ni-electroforms produced devices with minimal replication errors using hot-embossing at a turn around time of approximately 5 min per device. In addition, several different polymers (with different glass transition temperatures) could be effectively molded with these Ni-electroforms and many devices (>300) molded with the same master without any noticeable degradation. The PMMA devices consisted of deep and narrow channels for insertion of a capillary for the automated electrokinetic loading of sample into the microfluidic device and also, a pair of optical fibers for shuttling laser light to the detection zone and collecting the resulting emission for fluorescence analysis. Electrophoretic separations of double-stranded DNA ladders Phi X174 digested with Hae III) were performed with fluorescence detection accomplished using near-IR excitation. It was found that the narrow width of the channels did not contribute significantly to electrophoretic zone broadening and the plate numbers generated in the extended length separation channel allowed sorting of the 271/281 base pair fragments associated with this sizing ladder when electrophoresed in methylcellulose entangled polymer solutions. The dual fiber detector produced sub-attomole detection limits with the entire detector, including laser source, electronics and photon transducer, situated in a single box measuring 3' x 10" x 14".  相似文献   

5.
In this paper, we describe a simple method for fabrication of high quality poly(dimethylsiloxane) (PDMS)/glass microchip by twofold replica molding of PDMS. This technique first served to transfer the negative microchannels from the glass template to the PDMS substrate as a master, and then this PDMS master with positive microchannels was used to replicate the PDMS replica with negative microchannels. Finally, the PDMS replica was bound to a glass sheet by UV radiation. The fabricated microchips were successfully applied for the detection of C677T mutation from the human methylenetetrahydrofolate reductase gene.  相似文献   

6.
Thermoset polyester (TPE) microfluidic devices were previously developed as an alternative to poly(dimethylsiloxane) (PDMS) devices, fabricated similarly by replica molding, yet offering stable surface properties and good chemical compatibility with some organics that are incompatible with PDMS. This paper describes a number of improvements in the fabrication of TPE chips. Specifically, we describe methods to form TPE devices with a thin bottom layer for use with high numerical aperture (NA) objectives for sensitive fluorescence detection and optical manipulation. We also describe plasma-bonding of TPE to glass to create hybrid TPE-glass devices. We further present a simple master-pretreatment method to replace our original technique that required the use of specialized equipment.  相似文献   

7.
Yuen PK  Su H  Goral VN  Fink KA 《Lab on a chip》2011,11(8):1541-1544
This technical note presents a fabrication method and applications of three-dimensional (3D) interconnected microporous poly(dimethylsiloxane) (PDMS) microfluidic devices. Based on soft lithography, the microporous PDMS microfluidic devices were fabricated by molding a mixture of PDMS pre-polymer and sugar particles in a microstructured mold. After curing and demolding, the sugar particles were dissolved and washed away from the microstructured PDMS replica revealing 3D interconnected microporous structures. Other than introducing microporous structures into the PDMS replica, different sizes of sugar particles can be used to alter the surface wettability of the microporous PDMS replica. Oxygen plasma assisted bonding was used to enclose the microstructured microporous PDMS replica using a non-porous PDMS with inlet and outlet holes. A gas absorption reaction using carbon dioxide (CO(2)) gas acidified water was used to demonstrate the advantages and potential applications of the microporous PDMS microfluidic devices. We demonstrated that the acidification rate in the microporous PDMS microfluidic device was approximately 10 times faster than the non-porous PDMS microfluidic device under similar experimental conditions. The microporous PDMS microfluidic devices can also be used in cell culture applications where gas perfusion can improve cell survival and functions.  相似文献   

8.
Replica microchips for capillary array electrophoresis containing 10 separation channels (50 microm width, 50 microm depth and 100 microm pitch) and a network of sacrificial channels (100 microm width and 50 microm depth) were successfully fabricated on a poly(methyl methacrylate) (PMMA) substrate by injection molding. The strategy involved development of moving mask deep X-ray lithography to fabricate an array of channels with inclined channel sidewalls. A slight inclination of channel sidewalls, which can not be fabricated by conventional deep X-ray lithography, is highly required to ensure the release of replicated polymer chips from a mold. Moreover, the sealing of molded PMMA multichannel chips with a PMMA cover film was achieved by a novel bonding technique involving adhesive printing and a network of sacrificial channels. An adhesive printing process enables us to precisely control the thickness of an adhesive layer, and a network of sacrificial channels makes it possible to remove air bubbles and an excess adhesive, which are crucial to achieving perfect sealing of replica PMMA chips with well-defined channel and injection structures. A CCD camera equipped with an image intensifier was used to simultaneously monitor electrophoretic separations in ten micro-channels with laser-induced fluorescence detection. High-speed and high-throughput separations of a 100 bp DNA ladder and phi X174 Hae III DNA restriction fragments have been demonstrated using a 10-channel PMMA chip. The current work establishes the feasibility of mass production of PMMA multichannel chips at a cost-effective basis.  相似文献   

9.
Polydimethylsiloxane (PDMS) based microfluidic devices have found increasing utility for electrophoretic and electrokinetic assays because of their ease of fabrication using replica molding. However, the fabrication of high-resolution molds for replica molding still requires the resource-intensive and time-consuming photolithography process, which precludes quick design iterations and device optimization. We here demonstrate a low-cost, rapid microfabrication process, based on electrohydrodynamic jet printing (EJP), for fabricating non-sacrificial master molds for replica molding of PDMS microfluidic devices. The method is based on the precise deposition of an electrically stretched polymeric solution of polycaprolactone in acetic acid on a silicon wafer placed on a computer-controlled motion stage. This process offers the high-resolution (order 10  μ $\umu$ m) capability of photolithography and rapid prototyping capability of inkjet printing to print high-resolution templates for elastomeric microfluidic devices within a few minutes. Through proper selection of the operating parameters such as solution flow rate, applied electric field, and stage speed, we demonstrate microfabrication of intricate master molds and corresponding PDMS microfluidic devices for electrokinetic applications. We demonstrate the utility of the fabricated PDMS microchips for nonlinear electrokinetic processes such as electrokinetic instability and controlled sample splitting in ITP. The ability to rapid prototype customized reusable master molds with order 10  μ $\umu$ m resolution within a few minutes can help in designing and optimizing microfluidic devices for various electrokinetic applications.  相似文献   

10.
Wu H  Huang B  Zare RN 《Lab on a chip》2005,5(12):1393-1398
A thin layer of polydimethylsiloxane (PDMS) prepolymer, which is coated on a glass slide, is transferred onto the embossed area surfaces of a patterned substrate. This coated substrate is brought into contact with a flat plate, and the two structures are permanently bonded to form a sealed fluidic system by thermocuring (60 degrees C for 30 min) the prepolymer. The PDMS exists only at the contact area of the two surfaces with a negligible portion exposed to the microfluidic channel. This method is demonstrated by bonding microfluidic channels of two representative soft materials (PDMS substrate on a PDMS plate), and two representative hard materials (glass substrate on a glass plate). The effects of the adhesive layer on the electroosmotic flow (EOF) in glass channels are calculated and compared with the experimental results of a CE separation. For a channel with a size of approximately 10 to 500 microm, a approximately 200-500 nm thick adhesive layer creates a bond without voids or excess material and has little effect on the EOF rate. The major advantages of this bonding method are its generality and its ease of use.  相似文献   

11.
通过再铸模法将聚二甲基硅氧烷(PDMS)预聚物固化在由微细金属丝构成的微流体孔道的印模中,一次成型制作了整体式PDMS芯片.将所制作的芯片与化学发光检测器集成构建了微芯片毛细管电泳分析系统.初步考察了不经过衍生化时该系统分离检测氨基酸的性能.实验结果表明,精氨酸和天门冬氨酸在80s内完全分离,分离度为2.45,精氨酸的浓度检测限为3.50μmol/L.  相似文献   

12.
In this paper, glucose oxidase (GOx) was employed to construct a functional film on the poly(dimethylsiloxane) (PDMS) microfluidic channel surface and apply to perform electrophoresis coupled with in‐channel electrochemical detection. The film was formed by sequentially immobilizing poly(diallyldimethylammonium chloride) (PDDA) and GOx to the microfluidic channel surface via layer‐by‐layer (LBL) assembly. A group of neurotransmitters (5‐hydroxytryptamine, 5‐HT; dopamine, DA; epinephrine, EP; dobuamine, DBA) as a group of separation model was used to evaluate the effect of the functional PDMS microfluidic devices. Electroosmotic flow (EOF) in the modified PDMS microchannel was well suppressed compared with that in the native one. Experimental conditions were optimized in detail. As expected, these analytes were efficiently separated within 110 s in a 3.7 cm long separation channel and successfully detected at a single carbon fiber electrode. Good performances were attributed to the decreased EOF and the interactions of analytes with the immobilized GOx on the PDMS surface. The theoretical plate numbers were 2.19×105, 1.89×105, 1.76×105, and 1.51×105 N/m at the separation voltage of 1000 V with the detection limits of 1.6, 2.0, 2.5 and 6.8 μM (S/N=3) for DA, 5‐HT, EP and DBA, respectively. In addition, the modified PDMS channels had long‐term stability and excellent reproducibility.  相似文献   

13.
This work describes a novel and cost-effective method of polydimethylsiloxane (PDMS) microchips fabrication by using a printing plate photopolymer called Flexcel as a master mold (Fmold). This method has demonstrated the ability to generate multiple devices from a single master, reaching a minimum channel size of 25 μm, structures height ranging from 53 to 1500 μm and achieving dimensions of 1270 × 2062 mm2, which are larger than those obtained by the known techniques to date. Scanning electron microscopy, atomic force microscopy, and profilometry techniques have been employed to characterize the Fmold and PDMS replicas. The results showed high replication fidelity of Fmold to the PDMS replica. Furthermore, it was proved the reusability of the Fmold. In our study, up to 50 PDMS replicas have been fabricated without apparent degradation of the mold. The feasibility of the resulting PDMS replica was effectively demonstrated using a microfluidic device for enhanced oil recovery analysis. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1433–1442  相似文献   

14.
In this work, a microfluidic free-flow electrophoresis device with a novel approach for preventing gas bubbles from entering the separation area is presented. This is achieved by integrating partitioning bars to reduce the channel depth between electrode channels and separation chamber in order to obtain electrical contact and simultaneously prevent bubbles from entering the separation area. The three-layer sandwich chip features a reusable carrier plate with integrated ports for fluidic connection combined with a softlithographically cast microfluidic PDMS layer and a sealing glass slide. This design allows for a straightforward and rapid chip prototyping process. The performance of the device is demonstrated by free-flow zone electrophoretic separations of fluorescent dye mixtures as well as by the separation of labeled amines and amino acids with separation voltages up to 297 V.  相似文献   

15.
Fabrication of microfluidic systems in poly(dimethylsiloxane)   总被引:40,自引:0,他引:40  
Microfluidic devices are finding increasing application as analytical systems, biomedical devices, tools for chemistry and biochemistry, and systems for fundamental research. Conventional methods of fabricating microfluidic devices have centered on etching in glass and silicon. Fabrication of microfluidic devices in poly(dimethylsiloxane) (PDMS) by soft lithography provides faster, less expensive routes than these conventional methods to devices that handle aqueous solutions. These soft-lithographic methods are based on rapid prototyping and replica molding and are more accessible to chemists and biologists working under benchtop conditions than are the microelectronics-derived methods because, in soft lithography, devices do not need to be fabricated in a cleanroom. This paper describes devices fabricated in PDMS for separations, patterning of biological and nonbiological material, and components for integrated systems.  相似文献   

16.
PDMS微流体系统的加工制作   总被引:1,自引:0,他引:1  
目前,微流体装置越来越多地应用到分析系统、生物医学、化学等基础研究领域。传统的微流体系统制作方法是对玻璃和硅片进行刻蚀。用软刻法制作PDMS(Poly(dimethylsiloxane):聚二甲基硅氧烷)微流体装置比传统的制作方法更快速,成本更低廉,并且对于通道的密封也不需要玻璃或硅芯片键合密封等复杂工艺。这类软刻法的核心技术是快速原样制作法和复制压模技术。相对于微电子加工工艺,软刻法制作过程不需要超静环境,化学家和生物学家可在普通的实验室实现加工制作。本文介绍了PDMS微装置在分离和生物材料模式化等方面的应用。  相似文献   

17.
In this work, a piece of glass fiber was inserted into the channel of a poly(methyl methacrylate) (PMMA) electrophoresis microchip to enhance the electroosmotic flow (EOF) and the separation efficiency. The EOF value of the glass fiber-containing microchannel at pH 8.2 was determined to be 4.17 x 10(-4)cm2 V(-1)s(-1). The performance of the new microchip was demonstrated by its ability to separate and detect three purines coupled with end-column amperometric detection. In addition, a piece of trypsin-immobilized glass fiber was inserted into the channel of a PMMA microchip to fabricate a core-changeable microfluidic bioreactor that can be regenerated by changing the fiber. The in-channel fiber bioreactor has been coupled with matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the digestion and peptide mapping of bovine serum albumin and myoglobin.  相似文献   

18.
The preparation of surfaces in microfluidic devices that selectively retain proteins may be difficult to implement due to the incompatibility of derivatization methods with microdevice fabrication techniques. This review describes recently reported developments in simple and rapid methods for engineering the surface chemistries of microchannels based on construction of press-fit microdevices. These devices are fabricated by placing a glass fiber on a PDMS film and pressing the film on a silicon wafer or a microscope slide that has been derivatized with octadecyltrichlorosilane (ODS). The film adheres to the slide and forms an elliptically shaped channel around the fiber. The combination of surface wettability of a hydrophilic glass microfiber and the surrounding hydrophobic microchannel surfaces directs a narrow boundary layer of liquid next to the fiber in order to bring the sample in contact with the separation media and results in selective retention of proteins. This phenomenon may be exploited to enable microscale separation applications since there are a wide variety of fibers available with different chemistries. These may be used to rapidly fabricate microchannels that serve as stationary phases for separation at a microscale. The fundamental properties of such devices are discussed.  相似文献   

19.
微流控芯片技术因具有微量、快速、高效和高通量等特点,已成为分析化学领域中的研究热点之一.在微流控芯片中,最常见的可用作芯片的材料为玻璃、石英和各种塑料.玻璃和石英有很好的电渗性和光学性质,可采用标准的刻蚀工艺加工和用化学方法进行表面改性,但加工成本较高,封接难度较大.  相似文献   

20.
聚甲基丙烯酸甲酯微流控分析芯片的简易热压制作法   总被引:18,自引:0,他引:18  
提出聚甲基丙烯酸甲酯(PMMA)微流控分析芯片的一种简易热压制作法,研究了镍基、单晶硅和玻璃3种阳模制备芯片及芯片的封合条件.采用扫描电镜(SEM)和电荷耦合检测器(CCD)对PMMA芯片的微通道及其横截面形貌进行了表征.SEM图和CCD图表明实现了热压封接.测定了PMMA芯片的伏安曲线和电渗流,其电渗流值与文献报道值基本一致.本法制作的PMMA芯片用于电泳分离Cy5荧光染料,峰高RSD为2.2%(n=11),理论塔板数7.4×104m-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号