首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
α-Methylvinyl isobutyl and methyl ethers were polymerized cationically and the structure of the polymers was studied by NMR. Poly(α-methylvinyl methyl ether) polymerized with iodine or ferric chloride as catalyst was found to be almost atactic, whereas poly(α-methylvinyl isobutyl ether) polymerized in toluene with BF3OEt2 or AlEt2Cl as catalyst was found to be isotactic. In both cases, the addition of polar solvent resulted in the increase of syndiotactic structure as is the case with polymerization of alkyl vinyl ether. tert-Butyl vinyl ether was polymerized, and the polymer was converted into poly(vinyl acetate), the structure of which was studied by NMR. A nearly linear relationship between the optical density ratio D722/D736 in poly(tert-butyl vinyl ether) and the isotacticity of the converted poly(vinyl acetate) was observed.  相似文献   

2.
The cationic polymerization of two new divinyl ethers, 1‐(2‐vinyloxyethoxy)‐2‐[(2‐vinyloxyethoxy)carbonyl]benzene ( 2 ) and 1,2‐bis[(2‐vinyloxyethoxy)carbonyl]benzene ( 3 ), as well as 1,2‐bis(2‐vinyloxyethoxy)benzene ( 1 ), with BF3OEt2 in CH2Cl2 at 0 °C at low initial monomer concentrations ([M]0 = 0.15 and 0.075 M) gave soluble polymers with relatively high molecular weights and broad molecular weight distributions (MWDs), whereas reactions with the HCl/ZnCl2 initiating system yielded soluble polymers with relatively narrow MWDs (weight‐average molecular weight/number‐average molecular weight ? 1.6) under similar reaction conditions. An NMR structural analysis of the HCl/ZnCl2‐mediated polymers from the divinyl ethers showed that poly( 1 ) had virtually no unreacted vinyl ether groups throughout the polymerization (monomer conversion = 28–98%), whereas poly( 2 ) and poly( 3 ) possessed some amount of unreacted vinyl ether groups in the initial stage of the polymerization; the content of the vinyl groups of poly( 2 ) was 18 mol % at a 15% monomer conversion, and the content of the vinyl groups of poly( 3 ) was 31 mol % at an 18% monomer conversion. Therefore, divinyl ether 1 underwent cyclopolymerization exclusively to give almost completely cyclized polymers [degree of cyclization (DC) ~ 100%], whereas divinyl ethers 2 and 3 exhibited a lower cyclopolymerization tendency [DC for poly( 2 ) = 82%; DC for poly( 3 ) = 69%]. The differences in the cyclopolymerization tendencies among the divinyl ethers can be explained by the differences in the solvation powers of the neighboring functional groups adjacent to the vinyl ether moiety with the active center: the ether oxygen of the ether neighboring group solvates intramolecularly with the active center to accelerate the intramolecular propagation, but such an interaction is less effective with the more electron‐deficient oxygen attached to the carbonyl group of the ester neighboring group. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 281–292, 2003  相似文献   

3.
Cationic polymerization of 2-vinyloxyethyl phthalimide ( 1 ) in CH2Cl2 at ?15°C with hydrogen iodide/iodine (HI/I2) as initiator led to living polymers of a narrow molecular weight distribution (M?w/M?n = 1.1–1.25). The number-average molecular weight of the polymers was in direct proportion to monomer conversion and could be controlled in the range of 1000–6000 by regulating the 1 /HI feed ratio. However, when a fresh monomer was supplied to the completely polymerized reaction mixture, the molecular weight of the polymers was not directly proportional to monomer conversion. The polymerization of 1 by boron trifluoride etherate (BF3OEt2) in CH2Cl2 at ?78°C gave polymers with relatively high molecular weight (M?w > 20,000) and broad molecular weight distribution (M?w/M?n ~ 2). The HI/I2-initiated polymerization of 1 was an order of magnitude slower than that of ethyl vinyl ether, probably because of the electron-withdrawing phthalimide pendant. Hydrazinolysis of the imide functions in poly( 1 ) gave a water-soluble poly(vinyl ether) ( 3 ) with aliphatic primary amino pendants.  相似文献   

4.
Critical surface tensions γc of poly(vinyl butyral) and poly(vinyl benzal) multilayers built up by the Langmuir-Blodgett method were measured with polyhydric alcohols and n-alkanes. The γc values of both polymer multilayers increased with increasing pressures of the piston oils used to control pressures of polymers on the water surface during deposition. The γc value of poly(vinyl butyral) multilayers built up to lower pressure of the piston oil was approximately consistent with a crystalline hydrocarbon surface, while the γc value of the multilayer built up to higher pressure of the piston oil was approximately consistent with a—CH3 rather than a ? CH2 ? CH2? surface. All results for γc values of poly(vinyl benzal) multilayers were very close to the γc value of benzene ringrich surface. The γc value of the multilayer built up to lower pressure of the piston oil almost coincided with the γc value for amorphous polystyrene, while the γc value for the multilayer built up to higher pressure of the piston oil was in fair agreement with γc for an aromatic ring edge in the crystalline state. Values of γsd, the dispersion force contribution to the surface free energy of multilayers calculated by Fowkes' relation, were in fair agreement with the corresponding observed γc values, respectively. It is concluded from these measurements that orientations and surface structures in both polymer multilayers are affected by pressure change of piston oils. The properties on monolayers of two polymers at a air-water interface and on barium stearate multilayers are also presented.  相似文献   

5.
The formation of polymers with erythro-meso structures, which could not be obtained from propenyl ethers with BF3O(C2H5)2, was studied by 13C-NMR spectroscopy on poly(ß-substituted vinyl ether)s obtained under a variety of conditions of polymerization. It was established that poly(cis-ethyl propenyl ether) obtained with Al2(SO4)3–H2SO4 complex in toluene at 0°C was a highly stereoregular polymer with an erythro-meso structure. Cis-2-chlorovinyl ethyl ether and cis-methyl and ethyl butenyl ethers also yielded polymers with erythro-meso structures under the same conditions. In addition, with BF3O(C2H5)2 at ?78°C these three cis isomers produced amorphous polymers with threo-meso, racemic, and, in a few cases, erythro-meso structures, whereas cis-ethyl propenyl ether produced polymers with only threo-meso and racemic structures by the same catalyst. On the other hand, all trans isomers produced stereoregular polymers with threo-meso structures with BF3O(C2H5)2 at ?78°C, regardless of their ß-substituents; no erythro-meso structures were found in the polymers obtained.  相似文献   

6.
New fluorinated poly(ether sulfone)s were prepared from bisphenols and α,ωbis(4-fluorophenylsulfonyl)perfluoroalkanes. The fluorinated sulfone monomers were synthesized by reaction of 4-fluorobenzenethiol salts with perfluoroalkylene diiodides, followed by oxidation. Sodium carbonate mediated polymerization gave high molecular weight polymers in excellent yield. The polymers are generally soluble in chlorinated hydrocarbons and some dipolar solvents, are amorphous with Tg's in the range of 120–160°C and are stable to 400°C. They form clear, colorless films by solution casting. Cast films have dielectric constants and dissipation factors somewhat below those of typical poly(ether sulfone)s, and show good permeability and selectivity for O2/N2 gas separations.  相似文献   

7.
Various types of fluorine‐containing star‐shaped poly(vinyl ether)s were successfully synthesized by crosslinking reactions of living polymers based on living cationic polymerization. Star polymers with fluorinated arm chains were prepared by the reaction between a divinyl ether and living poly(vinyl ether)s with fluorine groups (C4F9, C6F13, and C8F17) at the side chain using cationogen/Et1.5AlCl1.5 in a fluorinated solvent (dichloropentafluoropropanes), giving star‐shaped fluorinated polymers in high yields with a relatively narrow molecular weight distribution. The concentration of living polymers for the crosslinking reaction and the molar feed ratio of a bifunctional vinyl ether to living polymers affected the yield and molecular weight of the star polymers. Star polymers with block arms were prepared by a linking reaction of living block copolymers of a fluorinated segment and a nonfluorinated segment. Heteroarm star‐shaped polymers containing two‐ or three‐arm species were synthesized using a mixture of different living polymer species for the reaction with a bifunctional vinyl ether. The obtained polymers underwent temperature‐induced solubility transitions in various organic solvents, and their concentrated solutions underwent sol–gel transitions, based on the solubility transition of a thermoresponsive fluorinated segment. Furthermore, a slight amount of fluorine groups were shown to be effective for physical gelation when those were located at the arm ends of a star polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Cationic polymerization of α‐methyl vinyl ethers was examined using an IBEA‐Et1.5AlCl1.5/SnCl4 initiating system in toluene in the presence of ethyl acetate at 0 ~ ?78 °C. 2‐Ethylhexyl 2‐propenyl ether (EHPE) had a higher reactivity, compared to corresponding vinyl ethers. But the resulting polymers had low molecular weights at 0 or ?50 °C. In contrast, the polymerization of EHPE at ?78 °C almost quantitatively proceeded, and the number‐average molecular weight (Mn) of the obtained polymers increased in direct proportion to the EHPE conversion with quite narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight ≤ 1.05). In monomer‐addition experiments, the Mn of the polymers shifted higher with low polydispersity as the polymerization proceeded, indicative of living polymerization. In the polymerization of methyl 2‐propenyl ether (MPE), the living‐like propagation also occurred under the reaction conditions similar to those for EHPE, but the elimination of the pendant methoxy groups was observed. The introduction of a more stable terminal group, quenched with sodium diethyl malonate, suppressed this decomposition, and the living polymerization proceeded. The glass transition temperature of the obtained poly(MPE) was 34 °C, which is much higher than that of the corresponding poly(vinyl ether). This poly(MPE) had solubility characteristics that differed from those of poly(vinyl ethers). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2202–2211, 2008  相似文献   

9.
Ethyl 2-(vinyloxy)ethoxyacetate ( 4 ; CH2?CH? OCH2CH2OCH2? COOC2H5), a vinyl ether having both carboxylic acid ester and oxyethylene unit in its pendant, afforded well-defined living polymers when polymerized by the hydrogen iodide/iodine (HI/I2) initiating system in toluene at ?40°C. The polymers possessed a narrow molecular weight distribution (M w/M n ≤ 1.15), and their molecular weight (M n) increased proportionally to monomer conversion or the molar ratio of the monomer to hydrogen iodide. The polymer molecular weight also increased upon addition of a fresh feed of the monomer to a completely polymerized reaction mixture. Polymers of high molecular weights (M n > 5 × 105) and broad molecular weight distributions were obtained by BF3OEt2 in toluene at ?40°C. Polymerization rate of 4 with HI/I2 is ca. 100 times greater than that of the corresponding alkyl vinyl ether, and thus 4 was found to be one of the most reactive vinyl ethers thus far studied. Alkaline hydrolysis of the pendant ester groups of the polymers gave a vinyl ether-based polymeric carboxylic acid 6 with a narrow molecular weight distribution.  相似文献   

10.
Cationic cyclopolymerizations of 2,2‐bis(vinyloxymethyl)bicyclo[2.2.1]heptane ( 1 ), 5,5‐bis(vinyloxymethyl)‐2‐bicyclo[2.2.1]heptene ( 2 ), and 2,2‐bis(vinyloxymethyl)tricyclo[3.3.1.1]3, 7decane ( 3 ), divinyl ethers with a norbornane, norbornene, or adamantane unit, respectively, were investigated with the HCl/ZnCl2 initiating system in toluene and methylene chloride at ?30 °C. All the reactions proceeded quantitatively to give gel‐free, soluble polymers in organic solvents. The number‐average molecular weight (Mn) of the polymers increased in direct proportion to monomer conversion and further increased on addition of a fresh monomer feed to the almost completely polymerized reaction mixture. The contents of the unreacted vinyl groups in the produced soluble polymers were less than ~10 mol %, and therefore, the degree of cyclization of the polymers was determined to be over ~90%. These facts show that cyclopolymerization of 1 , 2 , and 3 exclusively occurred and the poly(vinyl ether)s with the cyclized repeating units and polycyclic pendants were obtained with their molecular weights being regulated. BF3OEt2 initiator also caused cyclopolymerization of 1 , 2 , and 3 to give the corresponding high‐molecular‐weight cyclopolymers quantitatively. Glass transition temperatures (Tg's) of poly( 1 ) and poly( 2 ) were 165–180 °C, and Tg's of poly( 3 ) were 211–231 °C; these values are very high as vinyl ether polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2445–2454  相似文献   

11.
1‐Benzocyclobutenyl vinyl ether (1) was easily prepared by the elimination reaction of hydrogen bromide from 1‐benzocyclobutenyl 1‐bromoethyl ether obtained by 1‐bromobenzocyclobutene and ethylene glycol via two steps in a good yield. Cationic polymerizations of 1 was carried out at −78°C for 2 h in toluene in the presence of BF3OEt2 as an initiator to give quantitatively the corresponding polymers (2) as white solids. As a model reaction of the polymer reaction of 2 with dienophiles, the Diels–Alder reactions of 1‐methoxybenzocyclobutene with maleic anhydride (MA) in toluene at 100–140°C for 3 h were carried out to obtain the corresponding Diels–Alder adduct quantitatively at 140°C. The polymer reactions of 2 with MA and N‐phenylmaleimide (MI) in toluene were carried out to yield the corresponding Diels–Alder adduct polymers in good yields. The degree of introduction of the dienophile could be controlled by temperature, and the unreacted benzocyclobutene moiety could further react with another benzocyclobutene moiety or dienophile. The properties (solubilities, Tg, and temperature of 10% weight loss) of the polymers obtained from the polymer reaction were quite different from those of 2. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 59–67, 1999  相似文献   

12.
Bulky substituents in vinyl trialkylsilyl ethers and vinyl trialkylcarbinyl ethers led to heterotactic polymers (H = 66%). The polymers were converted into poly(vinyl alcohol) (PVA) and further to poly(vinyl acetate), and tacticity was determined as poly(vinyl acetate). Vinyl triisopropylsilyl ether in nonpolar solvents yielded a heterotactic polymer with a higher percentage of isotactic triads than syndiotactic triads (Hetero-I). Vinyl trialkylcarbinyl ethers in polar solvents gave a heterotactic polymer with more syndiotactic triads than isotactic (Hetero-II). Heterotactic PVA was soluble in water and showed characteristics infrared absorptions. Interestingly, Hetero-I PVA showed no iodine color reaction, but Hetero-II showed a much more intense color reaction than a commercial PVA. The mechanism of heterotactic propagation was discussed in terms of the Markóv chain model.  相似文献   

13.
Applications of metal‐free living cationic polymerization of vinyl ethers using HCl · Et2O are reported. Product of poly(vinyl ether)s possessing functional end groups such as hydroxyethyl groups with predicted molecular weights was used as a macroinitiator in activated monomer cationic polymerization of ε‐caprolactone (CL) with HCl · Et2O as a ring‐opening polymerization. This combination method is a metal‐free polymerization using HCl · Et2O. The formation of poly(isobutyl vinyl ether)‐b‐poly(ε‐caprolactone) (PIBVE‐b‐PCL) and poly(tert‐butyl vinyl ether)‐b‐poly(ε‐caprolactone) (PTBVE‐b‐PCL) from two vinyl ethers and CL was successful. Therefore, we synthesized novel amphiphilic, biocompatible, and biodegradable block copolymers comprised polyvinyl alcohol and PCL, namely PVA‐b‐PCL by transformation of acid hydrolysis of tert‐butoxy moiety of PTBVE in PTBVE‐b‐PCL. The synthesized copolymers showed well‐defined structure and narrow molecular weight distribution. The structure of resulting block copolymers was confirmed by 1H NMR, size exclusion chromatography, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5169–5179, 2009  相似文献   

14.
Living cationic polymerizations of two silicon-containing vinyl ethers, 2-(t-butyldimethyl-silyloxyl)ethyl vinyl ether (tBuSiVE) and 2-(trimethylsilyloxyl)ethyl vinyl ether (MeSiVE), have been achieved with use of the hydrogen iodide/iodine (HI/I2) initiating system in toluene at ?15 or ?40°C, despite the existence of the acid-sensitive silyloxyl pendants. The living nature of the polymerizations was demonstrated by linear increases in the number-average molecular weights (M?n) of the polymers in direct proportion to monomer conversion and by their further rise upon addition of a second monomer feed to a completely polymerized reaction mixture. The polymers obtained in these experiments all exhibited very narrow molecular weight distributions (MWD) with M?w/M?n around or below 1.1. Desilylation of the polymers under mild conditions (with H+ for MeSiVE and F? for tBuSiVE) gave poly(2-hydroxyethyl vinyl ether), a water-soluble polyalcohol with a narrow MWD. The living processes also permitted clean syntheses of amphiphilic AB block copolymers and water-soluble methacrylate-type macromonomers, all of which bear narrowly distributed segments of the polyalcohol derived from the silicon-containing vinyl ethers.  相似文献   

15.
The degradative effects of γ-radiation on diethyl ether solutions of poly(alkyl vinyl ethers) under a variety of conditions were studied by polymer molecular weight measurements. Poly(methyl vinyl ether) (PMVE), poly(ethyl vinyl ether) (PEVE), poly(isopropyl vinyl ether) (PIPVE), and poly(isobutyl vinyl ether) (PIBVE) exhibited similar degradative behavior, with G(SC) values between 0.3 and 0.9 scissions/100 eV at 0°C. Chemically polymerized and radiation-polymerized PEVE samples gave comparable results. Chain degradation was much more pronounced for samples of poly(tert-butyl vinyl ether) (PTBVE) which yielded a G(SC) value of 3.6 at 0°C. Degradation experiments conducted on PEVE in air resulted in significantly higher rates of scission: G(SC) = 5.6 scissions/100 eV at 0°C. Chain scission was not measurably influenced by changing the solvent from diethyl ether to di-isopropyl ether. Increased polymer concentration was found to reduce the rate of polymer degradation.  相似文献   

16.
Stereoregulation in the cationic polymerization of various alkyl vinyl ethers was investigated with bis[(2,6‐diisopropyl)phenoxy]titanium dichloride ( 1 ; catalyst) in conjunction with the HCl adduct of isobutyl vinyl ether as an initiator in n‐hexane at −78 °C. The tacticities depended on the substituents of the monomers. Isobutyl and isopropyl vinyl ethers gave highly isotactic polymers (mm = 83%), whereas tert‐butyl and n‐butyl vinyl ethers resulted in lower isotactic contents (mm ∼ 50%) similar to those for TiCl4, a conventional Lewis acid, thus indicating that the steric bulkiness of the substituents was not the critical factor in stereoregulation. A statistical analysis revealed that the high isospecificity was achieved not by the chain end but by the catalyst 1 or the counteranion derived therefrom. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1060–1066, 2001  相似文献   

17.
Living cationic polymerization of alkoxyethyl vinyl ether [CH2?CHOCH2CH2OR; R: CH3 (MOVE), C2H5 (EOVE)] and related vinyl ethers with oxyethylene units in the pendant was achieved by 1-(isobutoxy)ethyl acetate ( 1 )/Et1.5AlCl1.5 initiating system in the presence of an added base (ethyl acetate or THF) in toluene at 0°C. The polymers had a very narrow molecular weight distribution (M?w/M?n = 1.1–1.2) and the M?n proportionally increased with the progress of the polymerization reaction. On the other hand, the polymerization by 1 /EtAlCl2 initiating system in the presence of ethyl acetate, which produces living polymer of isobutyl vinyl ether, yielded the nonliving polymer. When an aqueous solution of the polymers thus obtained was heated, the phase separation phenomenon was clearly observed in each polymer at a definite critical temperature (Tps). For example, Tps was 70°C for poly(MOVE), and 20°C for poly(EOVE) (1 wt % aqueous solution, M?n ~ 2 × 104). The phase separation for each case was quite sensitive (ΔTps = 0.3–0.5°C) and reversible on heating and cooling. The Tps or ΔTps was clearly dependent not only on the structure of polymer side chains (oxyethylene chain length and ω-alkyl group), but also on the molecular weight (M?n = 5 × 103-7 × 104) and its distribution. © 1992 John Wiley & Sons, Inc.  相似文献   

18.
Two sulfonyl group-containing bis(ether anhydride)s, 4,4′-[sulfonylbis(1,4-phenylene)dioxy]diphthalic anhydride ( IV ) and 4,4′-[sulfonylbis(2,6-dimethyl-1,4-phenylene)dioxy]diphthalic anhydride (Me- IV ), were prepared in three steps starting from the nucleophilic nitrodisplacement reaction of the bisphenolate ions of 4,4′-sulfonyldiphenol and 4,4′-sulfonylbis(2,6-dimethylphenol) with 4-nitrophthalonitrile in N,N-dimethylformamide (DMF). High-molar-mass aromatic poly(ether sulfone imide)s were synthesized via a conventional two-stage procedure from the bis(ether anhydride)s and various aromatic diamines. The inherent viscosities of the intermediate poly(ether sulfone amic acid)s were in the ranges of 0.30–0.47 dL/g for those from IV and 0.64–1.34 dL/g for those from Me- IV. After thermal imidization, the resulting two series of poly(ether sulfone imide)s had inherent viscosities of 0.25–0.49 and 0.39–1.19 dL/g, respectively. Most of the polyimides showed distinct glass transitions on their differential scanning calorimetry (DSC) curves, and their glass transition temperatures (Tg) were recorded between 223–253 and 252–288°C, respectively. The results of thermogravimetry (TG) revealed that all the poly(ether sulfone imide)s showed no significant weight loss before 400°C. The methyl-substituted polymers showed higher Tg's but lower initial decomposition temperatures and less solubility compared to the corresponding unsubstituted polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1649–1656, 1998  相似文献   

19.
A method for the synthesis of well-defined poly(alkyl vinyl ether–2-ethyl-2-oxazoline) diblock copolymers with hydrolytically stable block linkages has been developed. Monofunctional poly(alkyl vinyl ether) oligomers with nearly Poisson molecular weight distributions were prepared via a living cationic polymerization method using chloroethyl vinyl ether together with HI/ZnI2 as the initiating system and lithium borohydride as the termination reagent. Using the resultant chloroethyl ether functional oligomers in combination with sodium iodide as macroinitiators, 2-ethyl-2-oxazoline was polymerized in chlorobenzene/NMP to afford diblock copolymers. A series of poly(methyl vinyl ether–2-ethyl-2-oxazoline) diblock materials were found to have polydispersities of ≈ 1.3–1.4 and are microphase separated as indicated by two Tg's in their DSC thermograms. These copolymers are presently being used as model materials to study fundamental parameters important for steric stabilization of dispersions in polar media. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
The Na2CO3‐promoted polymerization of 1,3‐dioxolan‐2‐one (I) to afford poly(ethylene glycol) III was reinvestigated. The reaction appeared to involve a nucleophilic attack against the carbonyl and methylene groups of I to afford poly(carbonate) II with poly(ethylene glycol) linkages and ethylene oxide IV as a side product (10–22%). As the reaction progressed, poly(carbonate) II decreased and poly(ethylene glycol) III increased. Under some conditions, poly(ethylene glycol)s V and VI with vinyl ether terminal groups were formed unexpectedly. The formation of unsaturated products during the polymerization of I/EO (ethylene oxide) has not been reported in the literature. We believe that vinyl ethers were formed from the degradation of poly(carbonate)s and were accompanied by a reduction in molecular weight. The structures of vinyl ethers V and VI were confirmed by hydrogenation of the double bond into the ethyl ether group in VII and VIII, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 152–160, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号